Download presentation
Presentation is loading. Please wait.
Published byJodie Franklin Modified over 8 years ago
1
2004/5/281 Approximate Counting of Frequent Query Patterns over XQuery Stream Liang Huai Yang, Mong Li Lee, Wynne HSU DASFAA 2004 Speaker:Ming Jing Tsai
2
2 Introduction Efficient approach to improve XML management system Cache frequently retrieved results Frequent query patterns application Search engine XML query system
3
3 Preliminaries S = QPT 1,QPT 2, …,QPT N Query pattern trees(QPT) Label:{ “ * ”, ” // ” } ∪ tagset Rooted subtree(RST) root(RST) = root(QPT) RST V ’ QPT V, RST E ’ QPT E
4
4 QPT book titleauthorprice book title author price fn ln book title section QPT 1 QPT 2 QPT 3 book titleauthorprice RST
5
5 Approximate Counting rst.count app ≧ (σ-ε)N rst.count app ≧ rst.count true -Εn XQuery stream divided into buckets of w = bcurrent =
6
6 D-GQPT 1 362 book title author 54 fn ln 7 8 section price title RST 3 book 1 382 titleauthorprice book titleauthorprice 1,2,-1,3,-1,8,-1
7
7 D-GQPT 1 362 book title author 54 fn ln 7 8 section price title RST 3 book 1 382 titleauthorprice book titleauthorprice 1,2,-1,4,-1,9,-1
8
8 ECTree 1 1 2 1 3 1 6 1 8 1 28 1 26 1 23 G join G rmlne = 1 38 1 36 G join G rmlne 1 4 3 1 5 3 1 68 G join G rmlne 1 7 6 G join G rmlne = 1 45 3 1 36 4 1 38 4 1 36 7 G join G rmlne 1 368
9
9 Candidate Generation Rightmost active leaf node expansion G rmlne ( )= G join ( )= | = X j = i+1, …,N
10
10 Prune RST K+1 doesn ’ t exist in ECTree RST k+1.Δ = b current - β | RST K+1.tidlist| < β prune RST K+1 exists in ECTree RST K+1.count app = RST K+1. count app +|RST K+1.tidlist| RST K+1.count app + RST k+1.Δ < b current prune Join result with RST K+1 subtree induced by RST K+1
11
11 AppXQSMiner
12
12 AppXQSMiner
13
13 ECTree 1 1 2 1 3 1 6 1 8 1 28 1 26 1 23 G join G rmlne = 1 38 1 36 G join G rmlne 1 4 3 1 5 3 1 68 G join G rmlne 1 7 6 G join G rmlne = 1 45 3 1 36 4 1 38 4 1 36 7 G join G rmlne 1 368
14
14 Experiment P4 2.4GHz, 1GB RAM, WINXP DBLP DTD:98 nodes Shakespears ’ Play DTD: 23 nodes
15
15 Experiment error=0.1 σ
16
16 Experiment error = 0.1 σ
17
17 Experiment sup = 0.005
18
18 Experiment sup = 0.005
19
19 Experiment error = 0.05 σ
20
20 Experiment error = 0.05 σ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.