Download presentation
Presentation is loading. Please wait.
Published byAntony Stephens Modified over 8 years ago
1
1/25 X-ray Observations of the Dark Particle Accelerators Hironori Matsumoto (Kyoto Univ.)
2
2/25 Outline TeV unID objects: “Dark particle accelerators” The Suzaku satellite Suzaku Observations –HESS J1614-518 –HESS J1616-508 –TeV J2032+4130 –HESS J1713-381 (CTB37B) –HESS J1804-216 –HESS J1825-137 –HESS J1837-069 Summary
3
3/25 TeV unidentified objects Many new TeV objects with no obvious counterpart. TeV Galactic Plane Survey (Aharonian et al. 2005, 2006) HESS J1804-216 HESS J1616-508 HESS J1614-518 Gal. Cent. HESS J1713-381 HESS J1837-069 Dark particle accelerators HESS J1825-137 First example: TeVJ2032+4130 discovered by HEGRA (Aharonian et al. 2002)
4
4/25 Implications What particles are accelerated, protons or electrons? Electrons emit synchrotron X-rays very easily! Electron origin E 2 f(E) Energy π0π0 X-rayTeV Proton origin Synch IC If electrons, X-ray … synchrotron TeV … Inverse Compton of CMB Flux(TeV)/F(X) =U(CMB)/U(B) ~1 with a few micro Gauss Flux ratio (F(TeV)/F(X)) is a key to clarify the particles. TeV gamma-rays High-energy particles!
5
5/25 The Suzaku Satellite Hard X-ray Detector (HXD) X-ray Telescope (XRT) X-ray Imaging Spectrometer (XIS) +
6
6/25 Onboard Detectors X-ray Telescope (XRT) + X-ray Imaging Spectrometer (XIS) Mirror + CCD E=0.3—10keV Imaging & Spectroscopy High sensitivity (low background) & High-energy resolution Hard X-ray Detector (HXD) Semiconductor (PIN-Si) & scintillator (BGO&GSO) E=10—600keV High sensitivity (low background) Suzaku is the best tool for studying dim and diffuse objects.
7
7/25 HESSJ1614-518 (l, b)=(331.52, -0.58) HESS TeV γ-ray image (excess map) XIS FOV 50ks Brightest among the new objects. HESSJ1614
8
8/25 XIS FI (S0+S2+S3): 3-10keV band Extended object TeVγ-ray XIS image Swift XRT also detected (Landi et al. 2006) Obs. 50ks Src A Src B
9
9/25 XIS spectra NH=1.2(±0.5)e22cm -2 Γ=1.7(±0.3 ) F(2-10keV)=5e-13erg/s/cm 2 NH=1.2(±0.1)e22cm -2 Γ=3.6(±0.2 ) F(2-10keV)=3e-13erg/s/cm 2 Featureless non-thermal Featureless, but extremely soft Src A Src B Src A spectrum Src B spectrum
10
10/25 H.E.S.S. src A B=10μG B=1μG B=0.1μG Src A Src B Src A F(1-10TeV)/F(2-10keV)=34 Plausible X-ray counterpart: src A Matsumoto et al. 2008, PASJ, 60. S163 (Suzaku special issue No.2) Difficult to explain both the TeV gamma-ray and X-ray from the electron origin. The origin of srcA is not clarified.
11
11/25 HESSJ1616-508 HESS TeV image (excess map) (l, b)=(332.391, -0.138) XIS FOV 45ks Provided by S. Funk (MPI) HESSJ1616
12
12/25 XIS image XIS FI (S0+S2+S3): 3 — 12keV No X-ray counterpart F(2-10keV)<3.1e-13 erg/s/cm 2 TeV image 45ks F(TeV)/F(X)>55
13
13/25 If we assume electrons… Very weak B (B<1μGauss) HESSJ1616 SED Suzaku upper limit Strong cut-off or realistic? Matsumoto et al. 2007, PASJ, 59, 199 (Suzaku Special Issue No.1)
14
14/25 PSRJ1617-5055? INTEGRAL 18-60keV PSRJ1617 Landi et al. 2007 XMM-Newton 0.5-10keV PSRJ1617 Why is there no trace in X-ray band? Why is there no clear PWN in the radio (Kaspi et al. 1998) and X-ray bands? SNR RCW103
15
15/25 TeV J2032+4130 HEGRA TeV gamma-ray image Aharonian et al. (2005) First TeV unID object discovered with the HEGRA telescope. Cygnus region. Close to Cyg OB2 (OB stars) Cyg X-3 (micro-QSO) EGRET source Extended (~6arcmin)
16
16/25 Suzaku observation December 2007, 40ks obs. Two extended X-ray objects src1 src2 Murakami et al., in preparation
17
17/25 X-ray spectrum of the sources N H (10 22 cm -2 ) ΓF X (10 -13 erg s -1 cm -2 ) Src 10.72.12.0 Src 20.51.82.0 Both sources show power-law spectra. src1src2 Energy (keV) 12 5 10 52 1 Murakami et al., in preparation Point sources (Chandra) Point sources (Chandra) F(TeV)/F(X; src1 or src2) = 10 Suggesting proton acceleration.
18
18/25 HESSJ1713-381 (CTB37B) SNR CTB37B HESSJ1713-381 coincides with the SNR CTB37B Color: TeV White: radio
19
19/25 Non-thermal hard X-ray Nakamura et al. PASJ in print Suzaku 0.3-3.0keV Suzaku 3.0-10.0keV Green: TeV (HESS) Blue: radio White: X-ray (Suzaku) reg1 reg2 Foreground src Reg1: coincides with the TeV peak Reg2: offset hard emission
20
20/25 Suzaku 3.0-10.0 keV reg1 reg2 Thermal (kT=0.9keV)+PL(Γ=3.0) A point source discovered by Chandra (Aharonian et 1l. 2008) contributes much to the PL component. Hard PL (Γ=1.5) (+ Leakage from reg1). Roll-off energy > 15keV The hard PL suggests efficient acceleration. F(TeV)/F(X)~0.2 B~8uG assuming IC. Emax > 170 TeV
21
21/25 HESSJ1804-216 HESS TeV γ-ray image (excess map) Provided by S. Funk (MPI) (l, b)=(8.401, -0.033) XIS FOV 40ks Softest TeV spectrum among the new objects. HESSJ1804
22
22/25 XIS image XIS FI (S0+S2+S3): 3-10keV src1 src2 src1: point-like src2: extended or multiple TeV image 40ks Swift XRT (Landi et al. 2006) Chandra (Kargaltsev et al. 2007)
23
23/25 XIS spectra src1 src2 src1: point-like src2: extended src1src2 Γ-0.3±0.51.7±1.2 NH (10 22 cm -2 ) 0.2(<2.2)11±8 F(2-10keV) 10 -13 erg/s/cm 2 2.54.3 See Bamba et al. 2007, PASJ, 59, S209 (Suzaku Special Issue No.1) F(TeV)/F(X) 50 25
24
24/25 HESS J 1825-137 30arcmin~30pc @4kpc HESS J1825-137 Aharonian et al. 2006 H.E.S.S TeV γ excess map PSR J1826-1334 Distance from Pulsar (deg) Photon Index Γ IC by high-energy electrons from the pulsar? Spin-down luminosity ~ 2.8×10 36 erg s -1 Characteristic age 21.4 kyr (Clifton 1992) D~4kpc softening
25
25/25 Previous X-ray study (XMM-Newton) PSR J1826-1334 (B1823-13) Photon index ~ 2.3 NH~1.4×10 22 /cm 2 L X ~3×10 33 erg s -1 1arcmin~1pc@4kpc Pulsar PWN XMM-Newton 0.5-10keV H.E.S.S TeV γ excess map Gaensler et al. 2003 Why is the X-ray image much smaller? More extended if observed with high sensitivity? Suzaku observation!
26
26/25 Suzaku: Very extended PWN XIS 3F 1-9 keV source 6arcmin ~6pc@4kpc 2006/9 50ksec bgd Suzaku can detect X-rays much more extended than the XMM results. TeV image Uchiyama et al., PASJ, 2009, in print
27
27/25 1.2× (CXB+GRXE) CXB+GRXE Galactic Ridge X-ray Emission CXB Background Source Radial profile Unresolved Point sources X-rays are extended at least up to 15 arcmin (~17 pc)
28
28/25 X-ray spectra Region A Region B Region C Region D Γ=1.78(1.68-1.88) Γ=1.99(1.91-2.08) Γ=2.03 (1.95-2.14) A B C D Reg B-D: no change in photon index. electrons reach to 17 pc before cooled. =pulsar+PWN Synchrotron cooling time~1900yrs. Velectron>9000 km/s
29
29/25 Suzaku Results X-rayF(TeV)/F(X)Origin HESS J1614-518extended34? HESS J1616-508X>55? TeV J2032+41302 extended10? HESS J1804-2162 objects50 and 25? HESS J1713-381O0.2SNR CTB37B efficient acceleration HESS J1825-137Very extended1.2PWN
30
30/25 What is the dark accelerators? Old SNR? (Yamazaki et al. 2006) Electrons lost their energy by synchrotron cooling. Protons still keep energy due to small cooling rate. There should be more unID objects. (SN rate.. ~1SN/100yr ~100 unID objects?) GRB remnants or hyper-nova remnants? (Atoyan et al. 2006) GRB rate in our galaxy may be consistent with the number of unID objects. PWN? We need more information from radio to TeV gamma-rays Not clarified!
31
31/25 Summary Suzaku results: F(TeV)/F(X) is very large. –Suggesting proton accleration. X-ray: synchrotron from electrons. TeV : proton + proton π0 TeV gamma-rays Origin is not still clarified. –Old SNR? –GRB remnant? –PWN? –Other object?
32
32/25 HESSJ1837-069 HESS image INTEGRAL/ISGRI (Malizia et al. 2005) 1degx1deg X-rays were detected up to 300 keV by INTEGRAL
33
33/25 AXJ1838.0-0655 AXJ1837.3-0652 X-ray counterparts are offset from the TeV gamma-ray peak. TeV peak Pulsations of 70.5 ms were recently discovered from AXJ1838 with RXTE (Gotthelf et. al. 2008). Offset pulsar wind nebula Anada et al. in preparation
34
34/25 Summary X-rayF(TeV)/F(X)Origin HESS J1614-518extended34? HESS J1616-508X>55? TeV J2032+41302 extended~10? HESS J1713-381O0.2SNR CTB37B efficient acceleration HESS J1804-2162 objects50 and 25? HESS J1825-137Very extended1.2PWN HESS J1837-0692 extended1.4 and 8.2Offset PWN
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.