Download presentation
Presentation is loading. Please wait.
Published byNathaniel Wheeler Modified over 9 years ago
1
The nature of the fore arc mantle and implications for seismic anisotropy Peter van Keken University of Michigan With: Erik Kneller, Shun Karato, Ikuo Katayama, Maureen Long, Geoff Abers, Ellen Syracuse Sponsored by the National Science Foundation
2
Van Keken, EPSL, 2003 Fore arc mantle: high Q low T hydrated trench-parallel S-wave splitting Shear wave splitting: B-type fabric partly explains patterns for Honshu, Ryukyu 3D flow likely for Marianas, Central Andes Not clear: Cascadia, Costa Rica - Nicaragua
3
Van Keken, EPSL, 2003 Fore arc mantle: high Q low T hydrated trench-parallel S-wave splitting Shear wave splitting: B-type fabric partly explains patterns for Honshu, Ryukyu 3D flow likely for Marianas, Central Andes Not clear: Cascadia, Costa Rica - Nicaragua
4
Cascadia (Hyndman & Peacock EPSL 2003) Honshu (Yamano et al., 1997, cited in Yoshimoto, BSSA, 2006)
5
Cascadia (Hyndman & Peacock EPSL 2003) Honshu (Yamano et al., 1997, cited in Yoshimoto, BSSA, 2006)
6
Bostock et al., Nature, 2002 S perturbation (%) Cascadia
7
Bostock et al., Nature, 2002 S perturbation (%) Cascadia
8
From Hyndman & Peacock EPSL 2003
9
Northern Honshu (39.2N) (Zhang et al., Geology, 2004)
10
Nakajima, GLR, 2003 Stachnik et al., 2004
11
Syracuse et al., in prep. Rychert et al., in prep. Nicaragua Marianas: Pozgay, Wiens et al. (this meeting) 1.70
12
teleseismic Long and van der Hilst, PEPI, 2005
13
Hypotheses for formation of trench parallel anisotropy Melt related anisotropy
14
Kneller et al., EPSL, 2005
15
Kneller, Long, van Keken, in revision, EPSL Test seismic expression of B-type cold corner for Ryukyu
16
Kneller, Long, van Keken, in revision, EPSL
17
Local teleseismic Kneller, Long, van Keken, in revision, EPSL
18
Local teleseismic Kneller, Long, van Keken, in revision, EPSL
19
B-type works well for local S Teleseismic amplitudes too low in models Kneller, Long, van Keken, in revision, EPSL
20
Pozgay et al.,GJI 2007. trench arc back arc Andes Anderson, 2004 & in press Marianas SKS local
21
Hypotheses 3D Flow Mechanisms Buoyancy driven flow: crustal foundering, melt/water weakening and small scale convection (Behn et al., Science, 2007) Slab edge effects (Buttles and Olsen, 1998; Kincaid and Griffiths, 2003) 3D slab rollback and complex return flow (Anderson et al., 2004) 3D Slab geometry (Hall et al., 2000) : variable slab dip, curved trenches or slabs
22
Variable Slab Dip: Transition to flat slab subduction (Andes) 13º 30º Full Coupling at 80 km 500 km 300 km Trench Slab Contours (50 km) Kneller and van Keken, Nature, in press
23
Rheology and Finite Element Mesh 2-3 km resolution 10-15 km resolution Kneller and van Keken, Nature, in press
24
Trench-parallel velocity: u x (cm/yr) Particle stream lines Inflow channel with trench-parallel velocity component Magnitude is strongly dependent on rheology Kneller and van Keken, Nature, in press
25
800 km 500 km ~ 500 km 30º 10º 30º 17º z = -50 km z = -75 km z = -100 km Trench-parallel orientation of maximum stretch SKS, Anderson et al., 2004 Local S, Anderson et al., in press Kneller and van Keken, Nature, in press
26
Contours from Syracuse & Abers, G3, 2006. Splitting from Pozgay et al., GJI, 2007 Kneller and van Keken, Nature, in press
27
900 km Trench Slab Contours (50 km) 60º 400 km Curved Trench (Marianas) 300 km 1500 km Kneller and van Keken,Nature, in press
28
Maximum stretch directions 500 km 400 km Splitting: Pozgay et al., GJI, 2007 Contours: Syracuse and Abers, 2006
29
Van Keken, EPSL, 2003 Fore arc mantle: high Q low T hydrated trench-parallel S-wave splitting Shear wave splitting: B-type fabric partly explains patterns for Honshu, Ryukyu 3D flow likely for Marianas, Central Andes Not clear: Cascadia, Costa Rica - Nicaragua
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.