Download presentation
Presentation is loading. Please wait.
Published byErika Hoover Modified over 8 years ago
1
Electron.1 Wave nature of light Electromagnetic (EM) radiation- E emits wave like behavior All waves have: Wavelength- ( ) distance from crest to crest Frequency- ( ) # waves past a given point per second (s -1 ) Amplitude- height of wave from crest to origin All light travels at speed of light, c = 3.00 x 10 8 m/s c=
2
Electron -1 EM spectrum Radio Microwave Infrared Visible UV X-ray Gamma Low E High E High Low Low High Visible Light: Continuous spectrum ROYGBV Low E High E High Low Low High
3
Electromagnetic Spectrum
4
ROYGBV Violet: 400- 420 nm Blue: 420- 490 nm Green: 490- 580 nm Yellow: 580- 590 nm Orange: 590- 650 nm Red: 650-700 nm
5
Electron -1 What is the frequency of green light, which has a wavelength of 4.90 x 10 -7 m? An X-ray has a wavelength of 1.15 x 10 -10 m. What is its frequency? A popular radio station broadcasts with a frequency of 9.47 x 10 7 s -1. What is the wavelength of the broadcast? Hz = waves/sc= 3.00 x 10 8 m/s
6
Electron -1 Particle Nature of light Quantum- minimum amount of E gained or lost by an atom Quantitized E- E gained in packet (NOT continuous) E=h E= energy in J h= Planck’s Constant 6.6262X10 -34 Js = frequency (s -1 )
7
Electron -1 What is the energy of each of the following types of radiation? 6.32 x 10 20 s -1 9.50 x 10 13 Hz 1.05 x 10 16 s -1 What types of radiation are the above?
8
Electron -1 Photoelectric effect- Photoelectrons are emitted from a metals surface when light of certain frequency shines on it Ex. solar calculators, automatic doors Each metal has its threshold for the photoelectric effect If light is shined on metal that doesn’t have the correct frequency, no matter how long, e - will not be emitted
9
Electron -1 Atomic Emission Spectra e - excited will jump to another E level, As they fall they emit E (light) of the waves allow for a unique color (NOT a continuous color spectrum like a white light) Atomic EmissionAtomic Emission
10
Electron -2 Bohr- e - only have “allowable E states” Normally in ground state e - around nucleus in orbits Lower the E, closer the orbit to the nucleus Quantum number (n)- lowest E state
11
DeBroglie- all moving particles have wave-like characteristics
12
Electron -2 Heisenburg Uncertainty Principle Can’t know velocity & position of e - at same time
13
Schrodinger-quantum mechanical model of atom using wave properties of e - predicts e - will be found in orbitals, increase D of cloud = higher probability of e -
14
Electron -2 Principle quantum number (n)- tell relative sizes & shapes of orbitals Higher n = bigger orbital = increased time of e - away from nucleus Levels contain same number of sublevels as level number LevelSublevelsSublevel Called 11s 22s, p 33s, p, d 44s, p, d, f
15
Electron -2 ** Each orbital can only hold 2 e - Sublevel# Orbitals# e - held s12 p36 d510 f714
16
Electron -3 Aufbau principle- each e - occupies lowest E orbital available Electron Configuration- arrangement of e - in orbitals around atom Lower E more stable than high E Lowest E= ground state 1s 2 –1 is n –s is sublevel –2 is number of e - in sublevel & is a superscript All orbitals in each E sublevel are equal (the three orbitals are =E) Fill s, p, d, f, for each level Orbitals can overlap
17
Electron Sequence Model 1s 2s 3s 4s 5s 6s 7p 6p 5p 4p 3p 2p 6d 5d 4d 3d 4f 5f 7s Follow the yellow brick road
18
Electron Sequence by the Periodic Table 1s1s La Ac 1s1s 5f5f 4f4f 2s2s 3s3s 4s4s 5s5s 6s6s 7s7s 2p2p 3p3p 4p4p 5p5p 6p6p 3d3d 4d4d 5d5d 6d6d
19
The Periodic Table 1H1H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr 4 Be 12 Mg 20 Ca 38 Sr 56 Ba 88 Ra 21 Sc 39 Y 57 La 89 Ac 22 Ti 40 Zr 72 Hf 104 Rf 23 V 41 Nb 73 Ta 105 Db 42 Mo 74 W 106 Sg 25 Mn 43 Tc 75 Re 107 Bh 26 Fe 44 Ru 76 Os 108 Hs 27 Co 45 Rh 77 Ir 109 Mt 28 Ni 46 Pd 78 Pt 110 Uun 111 Uuu 30 Zn 48 Cd 80 Hg 8O8O 16 S 34 Se 52 Te 84 Po 7N7N 15 P 33 As 51 Sb 83 Bi 6C6C 14 Si 32 Ge 50 Sn 82 Pb 5B5B 13 Al 31 Ga 49 In 81 Tl 9F9F 17 Cl 35 Br 53 I 85 At 2 He 10 Ne 18 Ar 36 Kr 54 Xe 86 Rn 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lr 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 24 Cr 29 Cu 47 Ag 79 Au 112 Uub 114 Uuq 116 Uuh 118 Uuo s d p f s1s1 s2s2 d1d1 d2d2 d3d3 d4d4 d5d5 d6d6 d7d7 d8d8 d9d9 d 10 p1p1 p2p2 p3p3 p4p4 p5p5 p6p6 f1f1 f2f2 f3f3 f4f4 f5f5 f6f6 f7f7 f8f8 f9f9 f 10 f 11 f 12 f 13 f 14 1 2 3 4 5 6 7 4 5
20
Electon -3 Electron Orbital Diagram: visually shows e - placement around the nucleus Each orbital gets own box Orbital# Orbitals# electrons held# boxes s121 p363 d5105 f7147
21
Electon -3 Pauli Exclusion Principle- only 2 e - can occupy an orbital. Each w/ opposite spins show w/ arrow up and down NOT Hund’s Rule- e - w/ same spin must occupy each E level in a sublevel before doubling up Example: when filling the p sublevel with 4e -, each box gets 1 before doubling up one box NOT
22
Electron Configurations F – 1s 2 2s 2 2p 5 Cl – 1s 2 2s 2 2p 6 3s 2 3p 5 Al – 1s 2 2s 2 2p 6 3s 2 3p 1 Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 1s2s2p3s3p4s3d4p 1s2s2p3s3p4s3d4p 1s2s2p3s3p4s3d4p 1s2s2p3s3p4s3d4p
23
Electron Configurations Sc K P B 1s2s2p3s3p4s3d4p1s2s2p3s3p4s3d4p1s2s2p3s3p4s3d4p1s2s2p3s3p4s3d4p
24
Electon -3 Other helpful hints- #e= # p = atomic number if neutral atom Add superscripts to get the #e, #p
25
Electon -3 Noble Gas Configuration Go back to the last noble gas Write symbol for noble gas in brackets Write rest of configuration Na Complete Configuration: –1s 2 2s 2 2p 6 3s 1 Na Noble gas Configuration: –[Ne] 3s 1 Exceptions to electron configuration: e - want to be stable Stable is a full or ½ full e- shell Cr- [Ar] 4s 2 3d 4 [Ar] 4s 1 3d 5 Cu- [Ar] 4s 2 3d 9 [Ar] 4s 1 3d 10
26
Electon -3 Valence electrons- e - in outer most level Put in noble gas configuration Count e - in highest level Ex: Na 1s 2 2s 2 2p 6 3s 1 has 1 valence e - Cs [Xe] 6s 1 has 1 valence e - Cu [Ar] 4s 1 3d 10 has 1 valence e - S [Ne] 3s 2 3p 4 has 6 valence e - Lewis Dot Structures- shows valence e - around symbol Li N Be O B F C Ne
27
Properties of the d and f-Block Elements Magnetism – ability to be affected by magnet Diamagnetism – all e - are paired, substance is unaffected or slightly repelled by magnetic field Paramagnetic – unpaired electron in the valence orbital is attracted to magnetic field Ferromagnetism – strong attraction of substance, ions can align in direction of field and form permanent magnet
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.