Download presentation
Presentation is loading. Please wait.
Published byAlberta Strickland Modified over 9 years ago
1
A Precision Measurement of G E p /G M p with BLAST Chris Crawford Thesis Defense April 29, 2005
2
Outline Introduction »Formalism »World Data »Experiment overview Experimental Setup »LDS polarized target »BLAST detector »Calibrations Analysis »Cuts & yields »Asymmetry »Extraction of G E /G M »Systematic errors Conclusion »Results: G E /G M »Separation of G E, G M
3
Introduction G E,G M fundamental quantities describing charge/magnetization in the nucleon Test of QCD based calculations and models Provide basis for understanding more complex systems in terms of quarks and gluons Probe the pion cloud QED Lamb shift
4
Form Factors of the Nucleon Form Factor definition Nucleon current Breit frame
5
Elastic Cross Section = target spin angle w/r to the beam line
6
World Data World Unpolarized Data
7
Polarization Transfer Recoil proton polarization Focal Plane Polarimeter »recoil proton scatters off secondary 12 C target »P t, P l measured from φ distribution »P b, and analyzing power cancel out in ratio
8
G E /G M — World Data
9
Theory and Models Direct QCD calculations »pQCD scaling at high Q 2 »Lattice QCD Meson Degrees of Freedom »Dispersion analysis, Höhler et al. 1976 »Soliton Model, Holzwarth 1996 »VMD + Chiral Perturbation Theory, Kubis et al. 2000 »Vector Meson Dominance (VMD), Lomon 2002 QCD based constituent quark models (CQM) »LF quark-diquark spectator, Ma 2002 »LFCQM + CBM, Miller 2002 † Nucleon Electromagnetic Form Factors, Haiyan Gao, Int. J. of Mod. Phys. E, 12, No. 1, 1-40(Review) (2003)
10
Models Consistent with Polarized Data
11
Form Factor Ratio @ BATES Exploits unique features of BLAST »internal target: low dilution, fast spin reversal »large acceptance: simultaneously measure all Q 2 points »symmetric detector: ratio measurement Different systematics »also insensitive to P b and P t »no spin transport Q 2 = 0.1 – 0.9 (GeV/c) 2 »input for P.V. experiments »structure of pion cloud
12
Asymmetry Super-ratio Method Beam-Target Double Spin Asymmetry Super-ratio
13
Polarized Beam and Target Storage Ring » E = 850 MeV » I max =225 mA » P b = 0.65 Internal ABS Target » 60 cm storage cell » t = 4.9 10 13 cm -2 » P t = 0.80 isotopically pure internal target high polarization, fast spin reversal L = 3.1 10 31 cm -2 s -1 H 2 : 98 pb -1 D 2 : 126 pb -1 +2005 run
14
Atomic Beam Source Standard technology Dissociator & nozzle 2 sextupole systems 3 RF transitions 1 3 2 4 nozzle 6-pole 1 2 MFT (2->3) 1 3 6-pole 1 Spin State Selection:
15
Laser Driven Source (LDS) Optical pumping & Spin Exchange Spincell design Target and Polarimeter Results
16
Spin-Exchange Optical pumping
17
LDS Experimental Setup
18
Comparison of Polarized Targets
19
BLAST Detector Package Detector Requirements Definition of q e 2 , e . °, z 1 cm e/p/n/ separation PID: t 1 , Cerenkov Optimize statistics Large Acceptance Asymmetry Super-ratios Symmetric Detector Polarized targets 1 m diameter in target region Zero field at target B-gradients 50 mG/cm
20
TOF Scintillators timing resolution: σ=350 ps velocity resolution: σ= 1% ADC spectrum coplanarity cuts
21
Cosmics TOF Calibration L 15 L 12 L 9 L 6 L 3 L 0 R 0R 3R 6 channels
22
TOF Efficiency green: efficiency magenta: non-bias red: misses
23
TOF Scintillator Cuts TOF paddle, electron TOF paddle, proton
24
Čerenkov Detectors 1 cm thick aerogel tiles Refractive index 1.02-1.03 White reflective paint 80-90 % efficiency 5" PMTs, sensitive to 0.5 Gauss Initial problems with B field Required additional shielding 50% efficiency without shielding
25
Wire Chambers 2 sectors × 3 chambers 954 sense wires resolution 200μm signal to noise 20:1
26
Reconstruction Scintillators »timing, calibration Wire chamber »hits, stubs, segments »link, track fit PID, DST
27
Newton-Rhapson Track Fitter
28
Hyperbolic time dist function D TDC
29
Linear T2D Calibration 28 MeV 12 MeV p (GeV/c) ~ 1mm resolution 22 72 33
30
Wire Chamber Efficiency
31
Tracking Efficiency
32
WC Offsets/Resolution/Cuts p e -p e ( e )p p -p p ( e ) p-p(e)p-p(e) p-p(e)p-p(e)z p - z p (z e ) p e e e z e p p p p z p
33
Resolution and Yields TOF paddle # preliminary
34
Experimental Spin Asymmetry
35
Single-asymmetry Method measure P first, use to calculate R »model-dependent Super-ratio Method 2 equations in P, R in each Q 2 bin j »independent measure of polarization in each bin! »2n parameters P j, R j Global Fit Method fit for P, R 1, R 2, … from all A ij together »model independent »better statistics »n+1 parameters »can also fit for i = left,right sector j = Q 2 bin (1..n) = spin angle
36
Extractions of G E /G M
37
Systematic Errors Q 2 (1.8%) »comparison of e and p »difference between left/right sector errors most significant »TOF timing will help (0.8%) »fieldmap: 47.1° ± 1° »Hohler: 47.5° ± 0.8° »Fit Method: 42° ± 3° » (1 st 7 bins) 48° ± 4° »T 20 analysis: 46.5° ± 3°
38
G E /G M Results
39
Extraction of G E and G M
40
G E and G M Results BLAST + World Data
41
Conclusion 1 st measurement of G E /G M using double spin asymmetry 2 – 3.5× improvement in precision of G E /G M at Q 2 = 0.1– 0.5 GeV 2 sensitive to the pion cloud narrow dip structure observed in G E around Q 2 =0.3 GeV 2 ? systematic errors are being reduced
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.