Download presentation
Presentation is loading. Please wait.
Published byOsborn Gallagher Modified over 8 years ago
1
ESE534 -- Spring 2014 -- DeHon 1 ESE534: Computer Organization Day 20: April 9, 2014 Interconnect 6: Direct Drive, MoT
2
Previously Tree-based network –O(N) switches with linear population Mesh Interconnect –O(N p+0.5 ) switches with linear population Segmentation in Mesh ESE534 -- Spring 2014 -- DeHon 2
3
Today Directional Drive Mesh-of-Trees (MoT) Multi-level metal Heterogeneous Blocks Unified Network Design (time permit) ESE534 -- Spring 2014 -- DeHon 3
4
4 Bidirectional Any wire can send data any direction. Horizontal –Can route right or left Vertical –Can route up or down
5
Buffered Bidirectional Wires Logic C Block S Block 5 ESE534 -- Spring 2014 -- DeHon
6
6 Bidirectional Any wire can send data any direction. Horizontal –Can route right or left Vertical –Can route up or down Pros? Cons?
7
Tristate vs. Buffer Which is faster? ESE534 -- Spring 2014 -- DeHon 7
8
Buffered Switch Composition ESE534 -- Spring 2014 -- DeHon 8 Making a buffer tristateable makes it larger and diminishes its drive strength.
9
Directional Drive Slides and Study from Guy Lemieux (Paper FPT2004 – Tutorial FPT 2009) ESE534 -- Spring 2014 -- DeHon 9
10
Bidirectional Wires Problem Half of tristate buffers left unused Buffers + input muxes dominate interconnect area 10 ESE534 -- Spring 2014 -- DeHon
11
Bidirectional vs Directional 11 ESE534 -- Spring 2014 -- DeHon
12
Bidirectional vs Directional 12 ESE534 -- Spring 2014 -- DeHon
13
Bidirectional vs Directional 13 ESE534 -- Spring 2014 -- DeHon
14
Bidirectional Switch Block 14 ESE534 -- Spring 2014 -- DeHon
15
Directional Switch Block 15 ESE534 -- Spring 2014 -- DeHon
16
Bidirectional vs Directional Switch Element Same quantity and type of circuit elements, twice the wiring Switch Block Directional half as many Switch Elements 16 ESE534 -- Spring 2014 -- DeHon
17
Multi-driver Wiring Logic outputs use tristate buffers (C Block) Directional & multi-driver wiring C Block S Block CLB 17 ESE534 -- Spring 2014 -- DeHon
18
Single-driver Wiring Logic outputs use muxes (S Block) Directional & single-driver wiring New connectivity constraint S Block CLB 18 ESE534 -- Spring 2014 -- DeHon
19
Long Wires in Directional Long wires, span L tiles –Example L = 3 123 CLB 19 ESE534 -- Spring 2014 -- DeHon
20
Directional, Single-driver Benefits Average improvements 0% channel width (most surprising?) 9% delay 14% tile length of physical layout 25% transistor count 32% area-delay product 37% wiring capacitance Any reason to use bidirectional? 20 ESE534 -- Spring 2014 -- DeHon
21
Preclass Complete Table ESE534 -- Spring 2014 -- DeHon 21
22
MoT ESE534 -- Spring 2014 -- DeHon 22
23
ESE534 -- Spring 2014 -- DeHon 23 Recall: Mesh Switches Switches per switchbox: –6w/L seg Switches into network: –(K+1) w Switches per PE: –6w/L seg + Fc (K+1) w –w = cN p-0.5 –Total N p-0.5 Total Switches: N*(Sw/PE) N p+0.5 > N
24
ESE534 -- Spring 2014 -- DeHon 24 Recall: Mesh Switches Switches per PE: –6w/L seg + Fc (K+1) w –w = cN p-0.5 –Total N p-0.5 Not change for –Any constant Fc –Any constant L seg
25
ESE534 -- Spring 2014 -- DeHon 25 Mesh of Trees Hierarchical Mesh Build Tree in each column [Leighton/FOCS 1981]
26
ESE534 -- Spring 2014 -- DeHon 26 Mesh of Trees Hierarchical Mesh Build Tree in each column …and each row [Leighton/FOCS 1981]
27
ESE534 -- Spring 2014 -- DeHon 27 MoT Parameterization Support C with additional trees –(like BFT) C=1 C=2
28
ESE534 -- Spring 2014 -- DeHon 28 MoT Parameterization: P P=0.5 P=0.75
29
ESE534 -- Spring 2014 -- DeHon 29 Mesh of Trees Logic Blocks –Only connect at leaves of tree Connect to the C trees –Per side –4C total C<W
30
ESE534 -- Spring 2014 -- DeHon 30 Switches How many switches per tree? How many trees? How many total switches?
31
ESE534 -- Spring 2014 -- DeHon 31 Switches Total Tree switches –2 C N× (switches/tree) Sw/Tree:
32
ESE534 -- Spring 2014 -- DeHon 32 Switches Only connect to leaves of tree Leaf switches: C (K+1) Total switches Leaf + Tree O(N) Compare Mesh O(N p+0.5 )
33
ESE534 -- Spring 2014 -- DeHon 33 Wires Design: O(N p ) in top level Total wire width of channels: O(N p ) –Another geometric sum No detail route guarantee (at present)
34
ESE534 -- Spring 2014 -- DeHon 34 Empirical Results Benchmark: Toronto 20 Compare to L seg =1, L seg =4 –CLMA ~ 8K LUTs Mesh(L seg =4): w=14 122 switches/LB MoT(p=0.67,arity=2): C=4 89 switches/LB –Benchmark wide: 10% less CLMA largest Asymptotic advantage [Rubin,DeHon/FPGA2003]
35
MoT Parameters C, P Arity Staggering ESE534 -- Spring 2014 -- DeHon 35
36
ESE534 -- Spring 2014 -- DeHon 36 Staggering With multiple Trees –Offset relative to each other –Avoids worst-case discrete breaks
37
ESE534 -- Spring 2014 -- DeHon 37 Staggering With multiple Trees –(not offset)
38
ESE534 -- Spring 2014 -- DeHon 38 Staggering With multiple Trees –Offset relative to each other –Avoids worst-case discrete breaks
39
ESE534 -- Spring 2014 -- DeHon 39 Staggering With multiple Trees –Offset relative to each other –Avoids worst-case discrete breaks
40
ESE534 -- Spring 2014 -- DeHon 40 Flattening Can use arity other than two
41
ESE534 -- Spring 2014 -- DeHon 41 [Rubin&DeHon/TRVLSI2004] Overall 26% fewer than mesh
42
ESE534 -- Spring 2014 -- DeHon 42 Day 5
43
ESE534 -- Spring 2014 -- DeHon 43 Wire Layers = More Wiring Day 5
44
ESE534 -- Spring 2014 -- DeHon 44 Mesh Segmentation Wires of uniform length L seg Allow wires to bypass switchboxes
45
For Uniform Length Wires How does Z relate to X? ESE534 -- Spring 2014 -- DeHon 45 XX ZZ
46
Use of Metal Layers in Mesh Number of metal layers we can use is ultimately limited Uniform wires saturate vias from active layer at bottom ESE534 -- Spring 2014 -- DeHon 46
47
ESE534 -- Spring 2014 -- DeHon 47 MoT Layout Main issue is layout 1D trees in multilayer metal
48
ESE534 -- Spring 2014 -- DeHon 48 Row/Column Layout Geometric Progression does not saturate via space!
49
ESE534 -- Spring 2014 -- DeHon 49 Row/Column Layout
50
ESE534 -- Spring 2014 -- DeHon 50 Composite Logic Block Tile
51
ESE534 -- Spring 2014 -- DeHon 51 P=0.75 Row/Column Layout
52
ESE534 -- Spring 2014 -- DeHon 52 P=0.75 Row/Column Layout
53
ESE534 -- Spring 2014 -- DeHon 53 MoT Layout Easily laid out in Multiple metal layers –Minimal O(N p-0.5 ) layers Contain constant switching area per LB –Even with p>0.5
54
Compare Mesh Switch area per LB grows O(N p-0.5 ) Ability to use metal layers limited –Saturate vias MoT Switch area per LB constant O(1) Can use growing number of metal layers –While keeping switch area constant ESE534 -- Spring 2014 -- DeHon 54
55
Heterogeneous Blocks ESE534 -- Spring 2014 -- DeHon 55
56
Heterogeneous How integrate heterogeneous blocks? –Memory blocks alongside 4-LUTs –Processors –Custom Units ESE534 -- Spring 2014 -- DeHon 56
57
Replace Clusters Cluster LUTs Replace LUT clusters with other units Requires –same/similar I/O –Network support If replace in row (column) –Change height (width) to adjust for different size ESE534 -- Spring 2014 -- DeHon 57
58
Stratix V Floorplan TODO: commercial example ESE534 -- Spring 2014 -- DeHon 58 Source: http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
59
Replace Subtrees ESE534 -- Spring 2014 -- DeHon 59
60
ESE534 -- Spring 2014 -- DeHon Heterogeneous Example Unified Network Fine-grained spatial logic Memory Blocks VLIW temporal processors 60
61
ESE534 -- Spring 2014 -- DeHon 61 Big Ideas [MSB Ideas] Benefits to Single Driver Hierarchy structure –allows to save switches O(N) vs. (N p+0.5 ) –reduces worst-case switches in path –Can exploit multi-level metal
62
Admin HW8 due today HW9 next Wednesday –Must run tools; will take time (plan for it) Reading for Monday on Web ESE534 -- Spring 2014 -- DeHon 62
63
ESE534 -- Spring 2014 -- DeHon 63 Relation?
64
ESE534 -- Spring 2014 -- DeHon 64 How Related? What lessons translate amongst networks? Once understand design space –Get closer together Ideally –One big network design we can parameterize
65
ESE534 -- Spring 2014 -- DeHon 65 MoT HSRA (P=0.5)
66
ESE534 -- Spring 2014 -- DeHon 66 MoT HSRA (p=0.75)
67
ESE534 -- Spring 2014 -- DeHon 67 MoT BFT A C MoT maps directly onto a 2C HSRA –Same p’s BFT can route anything MoT can
68
ESE534 -- Spring 2014 -- DeHon 68 BFT MoT Decompose and look at rows Add homogeneous, upper-level corner turns
69
ESE534 -- Spring 2014 -- DeHon 69 BFT MoT
70
ESE534 -- Spring 2014 -- DeHon 70 BFT MoT
71
ESE534 -- Spring 2014 -- DeHon 71 BFT MoT
72
ESE534 -- Spring 2014 -- DeHon 72 BFT MoT BFT + BFT T = MoT w/ H-UL-CT –Same C, P –H-UL-CT: Homogeneous, Upper-Level, Corner Turns
73
ESE534 -- Spring 2014 -- DeHon 73 HSRA MoT (p=0.75)
74
ESE534 -- Spring 2014 -- DeHon 74 HSRA MoT (p=0.75) Can organize HSRA as MoT P>0.5 MoT layout –Tells us how to layout p>0.5 HSRA
75
ESE534 -- Spring 2014 -- DeHon 75
76
ESE534 -- Spring 2014 -- DeHon 76 MoT vs. Mesh MoT has Geometric Segment Lengths Mesh has flat connections MoT must climb tree –Parameterize w/ arity MoT has O(N p-0.5 ) fewer switches
77
ESE534 -- Spring 2014 -- DeHon 77 MoT vs. Mesh Wires –Asymptotically the same (p>0.5) –Cases where Mesh requires constant less –Cases where require same number
78
ESE534 -- Spring 2014 -- DeHon 78 [DeHon/TRVLSI2004]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.