Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.

Similar presentations


Presentation on theme: "Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate."— Presentation transcript:

1 Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate school of Science and Technology, Chiba University, Chiba, Japan UC Santa Barbara

2 1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

3 Carbon Nanotubes Extremely large aspect ratio Large variety Exploration of 1-D physics  ultimate quantum wire 1 nm up to ~ 1 cm Metal Semiconductor h 1s  2s EgEg

4 MetallicSemiconducting C h = na + mb n – m = 3M + 2) M  0, = 0 3) M  0, =  1 1) M = = 0 Metal Narrow Gap Semicond. Large Gap Semicond. Single-Walled Carbon Nanotubes

5 b a Unit cell Chiral Vector and Unit Cell O A T = t 1 a + t 2 b=(t 1, t 2 ) C h = na + mb=(n, m) ChCh T (4. 2) 1 2 3 4 1 2

6 Classification of Carbon Nanotubes Zigzag (n, 0) Armchair (n, n) C h = na 1 + ma 2 =(n, m) Chiral (n, m) a2a2 a1a1 n  m  0

7 1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

8 Bundled Carbon Nanotubes

9 Problem: Coexistence and Electronic Coupling of Different (n,m) Tubes M. Ichida et al., J. Phys. Soc. Jpn. 68, 3131 (1999). H1H1 H2H2 H3H3 E2E2 E1E1 E3E3 DOS E 100 meV

10 Carrier Relaxation Dynamics in Bundled Carbon Nanotubes Metallic Semiconductor V. B C. B Bundled SWNTs  < 1 ps J-S. Lauret et al., Phys. Rev. Lett. 90 057404 (2003)

11 Isolation of the Carbon Nanotubes Sonicate D2OD2O SDS SWNT Soap solution O'Connell et al., Science 297, 26 (2002)

12 D2OD2O SDS SWNT O'Connell et al., Science 297, 26 (2002) Produced by HiPco  Dispersed in 1% D 2 O solution of Sodium Dodecyl Sulfate (SDS)  Sonicated  Centrifuged H1H1 H2H2 H3H3 E2E2 E1E1 E3E3 DOS E Individually-Suspended SWNTs

13 Photo-Induced Carrier Relaxation Dynamics Metallic Semiconductor V. B C. B V. B C. B PL Bundled SWNTs Isolated SWNTs  < 1 ps  ~ ns

14 peak (n,m) Each peak corresponds to particular (n,m) (10,3) (7,6) (7,5) (10,2) (9,4) (8,6) (12,1) (11,3) (10,5) (9,7) (8,7) (9,5) (10,6) (9,8) (11,4) E excitation emission PL Excitation (PLE) Spectroscopy

15 H1H1 H2H2 H3H3 E2E2 E1E1 E3E3 DOS E  n = 0 See, T. Ando, Electronic States and Transport in Carbon Nanotubes. Allowed Optical Transitions for Isolated SWNTs

16 1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

17 Single-Walled Carbon Nanotubes photo-induced carrier lifetimes Hertel and Moos, Phys. Rev. Lett. 84, 5002 (2000) Chen et al., Appl. Phys. Lett. 81, 975 (2002) Han et al., Appl. Phys. Lett. 82, 1458 (2003) Lauret et al., Phys. Rev. Lett. 90, 057404 (2003) Korovyanko et al. Phys. Rev. Lett. 92, 017403 (2004) < 1 ps Bundled SWNT 5 - 120 ps Isolated SWNT G. N. Ostojic et al., Phys. Rev. Lett. 92, 117402 (2004) Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004) F. Wang et al., Phys. Rev. Lett. 92, 177401 (2004) L. Huang et al., Phys. Rev. Lett. 93, 017403 (2004) ~ 20 ns Theoretical C. D. Spataru et al., cond-mat/0301220 v1 (2003) ~ ns Isolated SWNT This work

18 Our previous study used a high-peak power OPA laser  < 20 ps Auger type recombination ?Phononed assist relaxation ? Catalyst-particle-mediated ?Exciton-exciton interaction ? Average inter-exciton dististance Purpose Photo-induced carrier relaxation dynamics in the low excitation limit Transient absorption  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) Phys. Rev. Lett. 92, 117402 (2004) 0.06 – 5.7 mJ/cm 2 J. Chem. Phys. 120, 3368 (2004) Time resolved fluence  ~ 7 ps 0.002 mJ/cm 2 Estimate the radiatibe relaxation time as 110 ns Phys. Rev. Lett. 92, 177401 (2004)  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) G. N. Ostojic et al., Phys. Rev. Lett. 92, 117402 (2004)  ~ 0.06 – 5.7 mJ/cm 2 Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004)  ~ 7 ps 0.002 mJ/cm 2 F. Wang et al., Phys. Rev. Lett. 92, 177401 (2004) Relaxation Dynamics of Photo-excited Carriers in SWNTs RadiativeNon-radiative ~ ps ~ ns Tube-tube interaction Catalyst particles at the tube ends Nonradiative recombination via surface defects etc. Exciton-exciton interaction ? What kind of the Non-radiative relaxation is taking place ? ~1mJ/cm2 ~640 e-h pairs in 1  m SWNT PRL. 92, 077402 (2004) 1 e-h pair per 1  m SWNT

19 Absorption shows sharp peaks SWNT is well isolated Single-Walled Carbon Nanotube Samples Absorption spectrum Excited SWNTs are (12,5), (12,1), (11,3) (10,5), (9,8), (9,7) Raman spectrum SWNT SDS micelle SDS miscelled SWNT Science VOL 297 593 (2002)

20 Experimental Setup / 2 Pulse picker 80 MHz  800kHz Ti:S laser 80MHz Excitation fluence: 100 nJ/cm 2 Pump : Probe = 10 : 1 Si detector Lock in Laser wavelength: 1.550 eV (E2H2) Delay stage (2 ns) Aperture SWNT

21 Checking the Experimental Setup GaAs Polarization of the pump and probe pulse No difference

22 Photo-Induced Carrier Dynamics in SWNT in Low Excitation Limit Pump-probe signal exists even at 1 nano-second !!! Room temperature Repetition rate: 8 MHz Polarization of the pump and probe: Previous reports in high excitation  < 120 ps

23 1:  < 1 ps 2:  ~ 1 ns Decay Dynamics

24 E E1 DOS E2 H2 H1 Decay Dynamics ~ ns E2H2  E1H1 intraband transition E1H1 carrier recombination < 1 ps

25 Polarization Memory Polarization memory exists even at 1 ns !!! In bundled SWNT, the polarization decay time ~ 10 ps O. J. Korovyanko et al., Phys. Rev. Lett. 92 017403 (2004) Polarization of the pump and probe pulses

26 Polarization Memory n  I pump cos 2  Pump Absorption is reduced No change Pump  Polarization of Pump

27 1.Introduction to Carbon Nanotubes 2.Micelle Suspension 3.Pump-probe in Isolated SWNT 4.Pump-probe in Vertically Aligned SWNT 5.Summary & Future Work Outline

28 Vertically Aligned Carbon Nanotubes 1  m SWNTs Quartz Y. Murakami et al. (Maruyama’s group at Univ. of Tokyo) Chemical Physics Letters 385 (2004) 298-303

29 Why do we use vertically aligned carbon nanotubes ? Randomly oriented Perpendicular e  l k  l Parallel e // l k  l From top e  l k // l BundledIsolated Vertically aligned carbon nanotubes Individually suspended carbon nanotubes

30 Optical Selection Rules in Bundled Carbon Nanotubes Parallel polarization e. g. H0  E0 H1  E1 H2  E2  n = 0 Perpendicular polarization e. g. H0  E1 H1  E0 H1  E2 H2  E1  n ≠ 0

31 Sample Two kinds of plasmon peaks CNT p 0°0° 0° 45° 5.2 eV Perpendicular polarization 0°0° 4.5 eV Parallel polarization 45° 

32 Experimental setup / 2 Ti:s laser 80MHz Excitation fluence: 640 nJ/cm 2 Excitation power: 10 mW Focus size 50 mm Pump : Probe = 10 : 1 Si detector Lock in Delay stage (300 ps) Aperture SWNT Lens f = 100 mm 25 mm CNT Probe Pump

33 Photo-induced carrier dynamics in vertically aligned carbon nanotubes P  Polarization memory Time delay [ps]

34 Discussion n  I pump cos 2  Plasmon oscillation P = 0.5  (exp.)  Pump pulse polarization

35 Summary Band structure & optical properties of CNTs Photo-induced carrier dynamics Isolated SWNTs  ~ 1 ns Polarization memory Vertically aligned SWNTs  ~ 1 ps Polarization memory

36 E E1 DOS E2 H2 H1 Question ~ ns E2H2  E1H1 intraband transition E1H1 carrier recombination < 1 ps

37 Future work Nature of Transient Absorption Polarization Dependence Spin Injection

38 Acknowledgement Rice University Spectroscopy Kono group: Spectroscopy D. C. Larrabee, G. N. Ostojic, A. Srivastava, R. Srivastava, C. Sun, J. Wang, S. Zaric, D. V. Orden, C. Wong, X. Wang, G. A. Khodaparast, and J. Kono Sample growth (Isolated SWNTs) Smalley group: Sample growth (Isolated SWNTs) J. Shaver, V. C. Moore, R. H. Hauge, and R. E. Smalley Tokyo University Sample growth (Vertically aligned SWNTs) Maruyama group: Sample growth (Vertically aligned SWNTs) Y. Murakami and S. Maruyama


Download ppt "Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate."

Similar presentations


Ads by Google