Presentation is loading. Please wait.

Presentation is loading. Please wait.

RNA processing and Translation. Eukaryotic cells modify RNA after transcription (RNA processing) During RNA processing, both ends of the primary transcript.

Similar presentations


Presentation on theme: "RNA processing and Translation. Eukaryotic cells modify RNA after transcription (RNA processing) During RNA processing, both ends of the primary transcript."— Presentation transcript:

1 RNA processing and Translation

2 Eukaryotic cells modify RNA after transcription (RNA processing) During RNA processing, both ends of the primary transcript are usually altered Also, usually some interior parts of the molecule are cut out, and the other parts spliced together Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

3 Split Genes and RNA Splicing Most eukaryotic genes and their RNA transcripts have long noncoding stretches of nucleotides that lie between coding regions These noncoding regions are called intervening sequences, or introns The other regions are called exons because they are eventually expressed, usually translated into amino acid sequences RNA splicing removes introns and joins exons, creating an mRNA molecule with a continuous coding sequence Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

4 Fig. 17-10 Pre-mRNA mRNA Coding segment Introns cut out and exons spliced together 5 Cap Exon Intron 5 1 30 31104 ExonIntron 105 Exon 146 3 Poly-A tail 5 Cap 5 UTR3 UTR 1 146

5 Molecular Components of Translation A cell translates an mRNA message into protein with the help of transfer RNA (tRNA) Molecules of tRNA are not identical: – Each carries a specific amino acid on one end – Each has an anticodon on the other end; the anticodon base-pairs with a complementary codon on mRNA Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

6 Fig. 17-13 Polypeptide Ribosome Amino acids tRNA with amino acid attached tRNA Anticodon Trp Phe Gly Codons 3 5 mRNA

7 Accurate translation requires two steps: – First: a correct match between a tRNA and an amino acid, done by the enzyme aminoacyl-tRNA synthetase – Second: a correct match between the tRNA anticodon and an mRNA codon Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

8 Fig. 17-15-4 Amino acid Aminoacyl-tRNA synthetase (enzyme) ATP Adenosine PPP P P P i P P i i tRNA Aminoacyl-tRNA synthetase Computer model AMP Adenosine P Aminoacyl-tRNA (“charged tRNA”)

9 Ribosomes The two ribosomal subunits (large and small) are made of proteins and ribosomal RNA (rRNA) A ribosome has three binding sites for tRNA: – The P site holds the tRNA that carries the growing polypeptide chain – The A site holds the tRNA that carries the next amino acid to be added to the chain – The E site is the exit site, where discharged tRNAs leave the ribosome Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

10 Fig. 17-16 Growing polypeptide Exit tunnel Large subunit Small subunit tRNA molecules E P A mRNA 5 3 (a) Computer model of functioning ribosome P site (Peptidyl-tRNA binding site) E site (Exit site) A site (Aminoacyl- tRNA binding site) E P A Large subunit mRNA binding site Small subunit (b) Schematic model showing binding sites Amino end Growing polypeptide Next amino acid to be added to polypeptide chain mRNA tRNA E 3 5 Codons (c) Schematic model with mRNA and tRNA

11 Building a Polypeptide The three stages of translation: – Initiation – Elongation – Termination Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

12 Ribosome Association and Initiation of Translation The initiation stage of translation brings together mRNA, a tRNA with the first amino acid, and the two ribosomal subunits First, a small ribosomal subunit binds with mRNA and a special initiator tRNA Then the small subunit moves along the mRNA until it reaches the start codon (AUG) Proteins called initiation factors bring in the large subunit that completes the translation initiation complex Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

13 Fig. 17-17 3 3 5 5 U U A A C G Met GTP GDP Initiator tRNA mRNA 5 3 Start codon mRNA binding site Small ribosomal subunit 5 P site Translation initiation complex 3 EA Met Large ribosomal subunit

14 Elongation of the Polypeptide Chain During the elongation stage, amino acids are added one by one to the preceding amino acid Three steps: codon recognition, peptide bond formation, and translocation Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

15 Fig. 17-18-4 Amino end of polypeptide mRNA 5 3 E P site A site GTP GDP E P A E PA GTP Ribosome ready for next aminoacyl tRNA E P A

16 Termination of Translation Termination occurs when a stop codon in the mRNA reaches the A site of the ribosome A water molecule is then added instead of an amino acid This reaction releases the polypeptide, and the translation assembly then comes apart Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Transcription/Translation Transcription/Transation Translation

17 Targeting Polypeptides to Specific Locations Two populations of ribosomes are evident in cells: free ribsomes (in the cytosol) and bound ribosomes (attached to the ER) Free ribosomes mostly synthesize proteins that function in the cytosol Bound ribosomes make proteins of the endomembrane system and proteins that are secreted from the cell

18 Point mutations can affect protein structure and function Mutations are changes in the genetic material of a cell or virus Point mutations are chemical changes in just one base pair of a gene Point mutations within a gene can be divided into two general categories – Base-pair substitutions – Base-pair insertions or deletions Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

19 Fig. 17-25 TRANSCRIPTION RNA PROCESSING DNA RNA transcript 3 5 RNA polymerase Poly-A RNA transcript (pre-mRNA) Intron Exon NUCLEUS Aminoacyl-tRNA synthetase AMINO ACID ACTIVATION Amino acid tRNA CYTOPLASM Poly-A Growing polypeptide 3 Activated amino acid mRNA TRANSLATION Cap Ribosomal subunits Cap 5 E P A A Anticodon Ribosome Codon E


Download ppt "RNA processing and Translation. Eukaryotic cells modify RNA after transcription (RNA processing) During RNA processing, both ends of the primary transcript."

Similar presentations


Ads by Google