Presentation is loading. Please wait.

Presentation is loading. Please wait.

N. Newman, MSE494/598 Handout #8 page 1. N. Newman, MSE494/598 Handout #8 page 2.

Similar presentations


Presentation on theme: "N. Newman, MSE494/598 Handout #8 page 1. N. Newman, MSE494/598 Handout #8 page 2."— Presentation transcript:

1 N. Newman, MSE494/598 Handout #8 page 1

2 N. Newman, MSE494/598 Handout #8 page 2

3 N. Newman, MSE494/598 Handout #8 page 3

4 N. Newman, MSE494/598 Handout #8 page 4 Potential diagram of Schottky barrier (n-type material) Metal Semiconductor CBM VBM bb Fermi-level

5 N. Newman, MSE494/598 Handout #8 page 5

6 N. Newman, MSE494/598 Handout #8 page 6

7 N. Newman, MSE494/598 Handout #8 page 7

8 N. Newman, MSE494/598 Handout #8 page 8

9 N. Newman, MSE494/598 Handout #8 page 9

10 N. Newman, MSE494/598 Handout #8 page 10

11 N. Newman, MSE494/598 Handout #8 page 11

12 N. Newman, MSE494/598 Handout #8 page 12

13 N. Newman, MSE494/598 Handout #8 page 13

14 N. Newman, MSE494/598 Handout #8 page 14

15 N. Newman, MSE494/598 Handout #8 page 15

16 N. Newman, MSE494/598 Handout #8 page 16 Electrostatics of p++ / n junction or n-Schottky barrier d 2 V/dx 2 = -  /  q N d  + + + + + + +  E = dV/dx = -  /  dx = - q N d x  V = - q N d x  dx = - q N d x 2 / 2  x=0 -qN d x d /  E x=x d -V

17 N. Newman, MSE494/598 Handout #8 page 17 Transition Capacitance of p++ / n junction or n-Schottky barrier V d - V applied = - q N d x d 2 / 2  i.e. x d = (V applied -V d ) 2  / q N d PARALLEL PLATE CAPACITOR C =  A / x d C T = A [q N d  / 2 (V applied - V d )] 1/2

18 N. Newman, MSE494/598 Handout #8 page 18 1/C T 2 = 2 (V applied - V d ) / (q N d  A 2 ) 1/C T 2 V applied Slope o 1/N d c VdVd

19 N. Newman, MSE494/598 Handout #8 page 19 N d 1 N d 2 V applied 1/C T 2 Slope o 1/N d 1 c VdVd Slope o 1/N d 2 c N d 2 >> N d 1 Can tailor C(V) by the control of the doping profile, for example for a hyperabrupt junction C is proportional to V -2 facilitating  = (LC)- 1/2 being proportional to a control voltage 1/C T 2 = 2 (V applied - V d ) / (q N d  A 2 )

20 N. Newman, MSE494/598 Handout #8 page 20 Diffusion Capacitance of p++ / n junction In forward bias, holes are injected into the n-type region. Q D = A q p no L p (e v D /V T - 1) = (L p 2 /D p ) I =  I C D = dQ/dV =  dI / dV =  I / (n V t )

21 N. Newman, MSE494/598 Handout #8 page 21

22 N. Newman, MSE494/598 Handout #8 page 22

23 N. Newman, MSE494/598 Handout #8 page 23

24 N. Newman, MSE494/598 Handout #8 page 24

25 N. Newman, MSE494/598 Handout #8 page 25

26 N. Newman, MSE494/598 Handout #8 page 26

27 N. Newman, MSE494/598 Handout #8 page 27

28 N. Newman, MSE494/598 Handout #8 page 28

29 N. Newman, MSE494/598 Handout #8 page 29 NPN Bipolar Junction Transistor (BJT)

30 N. Newman, MSE494/598 Handout #8 page 30


Download ppt "N. Newman, MSE494/598 Handout #8 page 1. N. Newman, MSE494/598 Handout #8 page 2."

Similar presentations


Ads by Google