Download presentation
Presentation is loading. Please wait.
Published byOwen Shelton Modified over 9 years ago
1
Context-Sensitive IR using Implicit Feedback Xuehua Shen, Bin Tan, ChengXiang Zhai Department of Computer Science University of Illinois, Urbana-Champaign
2
2 Problem of Context-Independent Search Jaguar Car Apple Software Animal Chemistry Software
3
3 Other Context Info: Dwelling time Mouse movement Clickthrough Query History Put Search in Context Apple software Hobby …
4
4 Problem Definition Q2Q2 {C 2,1, C 2,2,C 2,3, … } C2C2 … Q1Q1 User Query {C 1,1, C 1,2,C 1,3, …} C1C1 User Clickthrough ? User Information Need How to model and use all the information? QkQk e.g., Apple software e.g., Apple - Mac OS X Apple - Mac OS X The Apple Mac OS X product page. Describes features in the current version of Mac OS X, a screenshot gallery, latest software downloads, and a directory of...
5
5 Outline Four contextual statistical language models Experiment design and results Summary and future work
6
6 Retrieval Model QkQk D θQkθQk θDθD Similarity Measure Results Basis: Unigram language model + KL divergence U Contextual search: query model update using user query and clickthrough history Query HistoryClickthrough
7
7 Fixed Coefficient Interpolation (FixInt) QkQk Q1Q1 Q k-1 … C1C1 C k-1 … Average user query history and clickthrough Linearly interpolate history models Linearly interpolate current query and history model
8
8 Bayesian Interpolation (BayesInt) Q1Q1 Q k-1 … C1C1 C k-1 … Average user query and clickthrough history Intuition: if the current query Q k is longer, we should trust Q k more QkQk Dirichlet Prior
9
9 Online Bayesian Update (OnlineUp) QkQk C2C2 Q1Q1 Intuition: continuous belief update about user information need Q2Q2 C1C1
10
10 Batch Bayesian Update (BatchUp) C1C1 C2C2 … C k-1 Intuition: clickthrough data may not decay QkQk Q1Q1 Q2Q2
11
11 Data Set of Evaluation Data collection: TREC AP88-90 Topics: 30 hard topics of TREC topics 1-150 System: search engine + RDBMS Context: Query and clickthrough history of 3 participants.
12
12 Experiment Design Models: FixInt, BayesInt, OnlineUp and BatchUp Performance Comparison: Q k vs. Q k +H Q +H C Evaluation Metrics: MAP and Pr@20 docs
13
13 Overall Effect of Search Context Query FixInt ( =0.1, =1.0) BayesInt ( =0.2, =5.0) OnlineUp ( =5.0, =15.0) BatchUp ( =2.0, =15.0) MAPpr@20MAPpr@20MAPpr@20MAPpr@20 Q3Q3 0.04210.14830.04210.14830.04210.14830.04210.1483 Q 3 +H Q +H C 0.07260.19670.08160.20670.07060.17830.08100.2067 Improve 72.4%32.6%93.8%39.4%67.7%20.2%92.4%39.4% Q4Q4 0.05360.19330.05360.19330.05360.19330.05360.1933 Q 4 +H Q +H C 0.08910.22330.09550.23170.07920.20670.09500.2250 Improve 66.2%15.5%78.2%19.9%47.8%6.9%77.2%16.4% Interaction history helps system improve retrieval accuracy BayesInt better than FixInt; BatchUp better than OnlineUp
14
14 Using Clickthrough Data Only QueryMAPpr@20 Q3Q3 0.04210.1483 Q 3 +H C 0.07660.2033 Improve81.9%37.1% Q4Q4 0.05360.1930 Q 4 +H C 0.09250.2283 Improve72.6%18.1% QueryMAPpr@20 Q3Q3 0.04210.1483 Q 3 +H C 0.05210.1820 Improve23.8%23.0% Q4Q4 0.05360.1930 Q 4 +H C 0.06200.1850 Improve15.7%-4.1% QueryMAPpr@20 Q3Q3 0.03310.125 Q 3 +H C 0.06610.178 Improve99.7%42.4% Q4Q4 0.04420.165 Q 4 +H C 0.07390.188 Improve 67.2%13.9% BayesInt ( =0.0, =5.0) Clickthrough data can improve retrieval accuracy of unseen relevant docs Clickthrough data corresponding to non- relevant docs are useful for feedback
15
15 Sensitivity of BatchUp Parameters BatchUp is stable with different parameter settings Best performance is achieved when =2.0; =15.0
16
16 Summary Propose four contextual language models to exploit user interaction history for contextual search Construct an evaluation dataset based on TREC data ( http://sifaka.cs.uiuc.edu/ir/ucair/QCHistory.zip ) Experiment results show that user interaction history, especially clickthrough data, can improve the retrieval accuracy
17
17 Future Work Study a general framework for interactive information retrieval Study more sophisticated models to incorporate context information Build a system on the client side to capture and exploit user context information
18
18 Thank you ! The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.