Download presentation
Presentation is loading. Please wait.
Published byErik Peters Modified over 9 years ago
1
Using Neumann Series to Solve Inverse Problems in Imaging Christopher Kumar Anand
2
Anand-Neumann Series-AdvOl-Feb2007 2 Inverse Problem given measurements ( ) model ( ) Solve for.
3
Anand-Neumann Series-AdvOl-Feb2007 3 Seismic Imaging 1. Bang 2. Listen 3. Solve Acoustic Equations http://en.wikipedia.org/wiki/Seismology
4
Anand-Neumann Series-AdvOl-Feb2007 4 Magnetic Resonance Imaging 0. Tissue Density 1. Phase Modulation 2. Sample Fourier Transform 3. Invert Linear System
5
Anand-Neumann Series-AdvOl-Feb2007 5 Challenging when... model is big 1 000 000 000 variables model is nonlinear data is inexact (usually know error probabilistically)
6
Anand-Neumann Series-AdvOl-Feb2007 6 Imaging discretize continuous model regular volume/area elements sparse structure
7
Anand-Neumann Series-AdvOl-Feb2007 7 Solutions: Noise filter noisy solution 1. convolution filter 2. bilateral filter 3. Anisotropic Diffusion (uses pde) regularize via penalty 4. energy 5. Total Variation 6. something new
8
Anand-Neumann Series-AdvOl-Feb2007 8 Solutions: Problem Size I. use a fast method (i.e. based on FFT) II. use (parallelizable) iterative method a. Conjugate Gradient b. Neumann series III. use sparsity c. choose penalties with sparse Hessians IV. use fast hardware d. 1000-way parallelizable e. single precision
9
Anand-Neumann Series-AdvOl-Feb2007 9 Cell BE 25 GFlops DP 200 GFlops SP need 384-way ||ism 4-way SIMD 8-way cores 6-times unrolling double buffering
10
Anand-Neumann Series-AdvOl-Feb2007 10 Solutions: Nonlinearity use iterative method A. sequential projection onto convex sets B. trust region C. sequential quadratic approximations
11
Anand-Neumann Series-AdvOl-Feb2007 11 Plan of Talk A. example/benchmark B. optimization 1. fit to data 2. regularization i. new penalty (with optimized gradient) ii. nonlinear penalties C. solution 3. operator decomposition 4. Neumann series D. proof of convergence E. numerical example 5. noise reduction 6. linear convergence
12
Anand-Neumann Series-AdvOl-Feb2007 12 Example/Benchmark complex image complex data model
13
Anand-Neumann Series-AdvOl-Feb2007 13 Example/Benchmark diagonal blocks easily invertible
14
Anand-Neumann Series-AdvOl-Feb2007 14 Example/Benchmark direct inverse
15
Anand-Neumann Series-AdvOl-Feb2007 15 Optimizationfit-to-data quadratic penalties nonlinear penalties
16
Anand-Neumann Series-AdvOl-Feb2007 16 Fit to Data typically dense transformation use fast matrix-vector products e.g. FFT-based forward/adjoint problem linear forward problem gives quadratic objective
17
Anand-Neumann Series-AdvOl-Feb2007 17 Bilateral Filter spatial kernel range kernel Bilateral Regularizer
18
Anand-Neumann Series-AdvOl-Feb2007 18 Quadtratic Case optimize direction of gradient LP problem like FIR filter design heuristic choice of “stop band”
19
Anand-Neumann Series-AdvOl-Feb2007 19 Optimal Spatial Kernel discrete kernel not rotational symmetric exact in quadratic case quadratic case use in all cases all cases
20
Anand-Neumann Series-AdvOl-Feb2007 20 TV-like similar properties to Total Variation won’t smooth edges not differentiable
21
Anand-Neumann Series-AdvOl-Feb2007 21 Sequential Quadratic TV-like sequential quadratic approximation tangent to TV-like
22
Anand-Neumann Series-AdvOl-Feb2007 22 Mask penalize pixel values outside object
23
Anand-Neumann Series-AdvOl-Feb2007 23 Segmentation probability of observing pixels assumes discrete pixel values equal likelihood equal normal error
24
Anand-Neumann Series-AdvOl-Feb2007 24 Solve: Operator Decomposition“small” block diagonal with sparse banded blocks linear-time Cholesky decomposition leads to formal expression image rows blocks =
25
Anand-Neumann Series-AdvOl-Feb2007 25 plus (poly-order)(fast algorithm) linear in problem size Calculate Using Fast Matrix-Vector Ops
26
Anand-Neumann Series-AdvOl-Feb2007 26 Row by Row each block corresponds to a row each block can be calculated in parallel (number-rows)-way parallelism
27
Anand-Neumann Series-AdvOl-Feb2007 27 Even Better: Use Minimax Polynomial calculate
28
Anand-Neumann Series-AdvOl-Feb2007 28 minimax polynomial error step shortening Convergence next error current error
29
Anand-Neumann Series-AdvOl-Feb2007 29 Safe in Single- Precision recalculate gradient at each outer iteration numerical error only builds up during polynomial evaluation coefficients well-behaved (and in our control)
30
Anand-Neumann Series-AdvOl-Feb2007 30 Numerical Tests start with quadratic penalties add nonlinear penalties and change weights with and without time fixed budget for computation
31
Anand-Neumann Series-AdvOl-Feb2007 31 10 iterations I. 10 iterations with bi2 regularization
32
Anand-Neumann Series-AdvOl-Feb2007 32 100 iterations I. 10 iterations with bi2 regularization II. introduce other penalties 1. masking 2. magnet 3. segmentation
33
Anand-Neumann Series-AdvOl-Feb2007 33 15 iterations optimized c simple c
34
Anand-Neumann Series-AdvOl-Feb2007 34 Absolute Error iteration error
35
Anand-Neumann Series-AdvOl-Feb2007 35 Relative (to limit) Error iteration error
36
Anand-Neumann Series-AdvOl-Feb2007 36 Conclusion highly-parallel safe in single precision robust with respect to noise accommodates nonlinear penalties
37
Anand-Neumann Series-AdvOl-Feb2007 37 Thanks to: of students and colleagues in the
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.