Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Heavy multiquark systems from heavy ion collisions Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark.

Similar presentations


Presentation on theme: "1 Heavy multiquark systems from heavy ion collisions Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark."— Presentation transcript:

1 1 Heavy multiquark systems from heavy ion collisions Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark States and Sum Rules 3. Few words on New Predictions and Future Search

2 S H Lee 2 Babar: D SJ (2317) 0+ Puzzle in Constituent Quark Model(2400) 1.DK threshold effect 2.Chiral partner of (0 - 1 - ) 3.Tetraquark X(3872), Y(4260), Z(4430)   ’  Z(4051),Z(4248)   c1  Must contain cc ? molecule ? Recent Highlights in Hadron Physics – Heavy quark sector D0D*D1 186420072420 Z(4248) ? Tetraquark ? D0+D*D*+D*D+D1D1+D* 3871401442844427

3 S H Lee 3 Scalar tetraquark (Jaffe 76) Search for H dibaryon Search for  + pentaquark Previous Work on Multiquark hadrons - Light quark sector  1 (1400) Candidate for

4 S H Lee 4 Light Multiquark states and diquarks

5 S H Lee 5 Tetraquarks: Jaffe  color spin interaction: light scalar nonet q3q3 q1q1 q2q2 q4q4  Diquark configurations Diquark basis Q-antiQ basis  Scalar nonet |9,0 + >

6 S H Lee 6  1 (1400) E852 + Chung et al.  p-wave decay of  1 (1400) into   quark content of 10+10 Can not be obtained from QQ flavorAngular momTotal  Anti-sym1 (anti-sym)Symmetric I=1 part of Flavor 10+10  ijk  n j  m k Can be obtained from (QQ)(QQ): such as (3X6) + (3X6) Needs further experimental work

7 S H Lee 7 Recently observed heavy Multiquark states (qqcc) F.Navara, M. Nielsen, SHL: PLB 649, 166 (07) SHL, M. Nielsen et al: PLB 661, 28 (08) SHL, K.Morita, M.Nielsen: PRD 78, 076001 (08), NPA 815,29 (09) SHL, M.Nielsen, U. Wiedner: JKPS 55,424(09)

8 S H Lee 8 Belle: PRL 98, 082001 (07) e+ e-  J/  + X(3904)  D D* e+ e c c Through B decay Recently observed states at B-Factory b W-W- c c s Through ISR process

9 S H Lee 9 J PC Observation mode confirmationSpecial feature prediction X(3872) 1 ++ B+  X(3872)K +  J/+-K+ Belle, BaBar, CDF,D0 PP, X  J/(c=+) B(X  J)/B( X  )=1 Tornqvist DD* molecular state Y 1 –-  ISR Belle 4260,4360,4660 BaBar 4260,4360 [V][S] q=s m=4.65 q=u,d m=4.49 (Nielsen, et al) Ds0Ds* m=4.42 D0D* m=4.27 DD1 m=4.19 (Nielsen et al ) Hybrid Z +(4430) ?,0 - ’  [PS][S] m=4.52 (Nielsen, et al) D*D1 m=4.40 (Nielsen, Lee et al ) Z+(4050,4250) ?  D*D* m=4.15 DD1=4.19 (Nielsen, et al ) D*D*(4020) D1D(4285) threshold effect Newly observed states

10 S H Lee 10 J PC Special feature QSR tetraquark QSR molecule Others X(3872) 1 ++ B(X  J)/B( X  )=1 [AV][S] m=3.92 (Nielsen..) DD* m=3.87 (Nielsen,..) QSR with  (Morita), Mixture with cc Y 1 –-  ISR Belle 4260,4360,4660 BaBar 4260,4360 [V][S] q=s m=4.65 q=u,d m=4.49 (Nielsen, et al) Ds0Ds* m=4.42 D0D* m=4.27 DD1 m=4.19 (Nielsen et al ) Hybrid Z +(4430) ?,0 - ’  [PS][S] m=4.52 (Nielsen, et al) D*D1 m=4.40 (Nielsen, Lee et al ) Z+(4050,4250) ?  D*D* m=4.15 DD1=4.19 (Nielsen, et al ) D*D*(4020) D1D(4285) threshold effect Newly observed states

11 S H Lee 11  In principle QCD can not distinguish between diquark configuration and molecular configuration but if the overlap is large, plateau and OPE convergence, pole dominance QCD sum rule results  sum rule Small M 2 Large M 2 M 2

12 S H Lee 12 QCD sum rules X(3872): SHL, K. Morita, M. Nielsen (PRD08)  J=[s][V] Tetraquark current vs. J=DD* Molecular current Small width <2 MeV

13 S H Lee 13 Cont- Z(4430) : SHL, K. Morita, M. Nielsen (PRD08)  J=D1 D* Molecular current width = 40 MeV

14 S H Lee 14 Cont- Z 2 (4250) : SHL, K. Morita, M. Nielsen (PRD08)  J=D1 D Molecular current  But J=D* D* Molecular current gives Mass>4.2 in sum rule ?

15 S H Lee 15 Why not Tetraquarks  color spin interaction: q3q3 q1q1 q2q2 q4q4 q3q3 q1q1 H H H q1q1 q2q2 H

16 S H Lee 16 Some predictions on Heavy and Explicitly exotic Heavy Multiquark states (qqcc) SHL, S. Yasui : EPJC 64 283 (09) SHL, S. Yasui, W. Liu, CM.Ko : EPJC 54 259 (08)

17 S H Lee 17 Multiquark configuration: Mulders, Aerts, de Swart PRD80  color spin interaction: light scalar nonet u d u d u u d us u d us u u d usu s

18 S H Lee 18 Diquark inside Baryons u d ud s s Example Mass diffM  –M N M  -M  M  c -M  c M  b -M  b Formula290 MeV77 MeV154 MeV180 MeV Experiment290 MeV75 MeV170 MeV192 MeV

19 S H Lee 19 quark antiquark in Meson d u d u  Works very well with 3x C B = C M = 635 m u 2 ud d u x 3 = Mass diffM  –M  M K* -M K M D* -M D M B* -M B Formula635 MeV381 MeV127 MeV41 MeV Experiment635 MeV397 MeV137 MeV46 MeV 

20 S H Lee 20 Stable Multiquark configurations in a schematic diquark model

21 S H Lee 21 Multiquark configuration: Multers, Aerts, de Swart PRD80  Diquark attracation vs quark-antiquark q3q3 q1q1 q2q2  diquark picture: Yasui, Lee,.. (EJP08,EJP09) Type of diquark and its q-q binding S=C=0(ud)  A S=-1, m s =5/3m u (us)  3/5 A(ds)  3/5 A C=1, m c =5m u (uc)  1/5 A(dc)  1/5 A(sc)  3/25 A

22 S H Lee 22 Tetra-quark - configurations u d d u u d d u  0+0+ 0-0- 0-0- Binding against decay = (Mass of 2 Mesons) – (Mass of Tetraquark) ud cb u d c b  0+0+ 0-0- 0-0-

23 S H Lee 23 Tetra-quark – hadronic weak decay modes 1+1+ ud cc u d c c  0-0- 1-1-

24 S H Lee 24 Belle: PRL 98, 082001 (07) e+ e-  J/  + X(3904)  D D* T cc (3800) e+ e c c SHL, S Yasui, W Liu, C Ko (08) Can look for 1 + (Tcc) Previous works on Tcc Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M.Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) in press c c

25 S H Lee 25 Pentaquarks (states with two diquarks ) ud  1/2 - Q us ud Q s u  Qs  D

26 S H Lee 26 S=C=0(ud)  -A S=-1, m s =5/3m u (us)  -3/5 A(ds)  -3/5 A C=1, m c =5m u (uc)  -1/5 A(dc)  -1/5 A(sc)  -3/25 A Di-bayron – general considerations  2  0+0+  4  6  2   4  di-baryon BB Conf-1  2   4  BB Conf-2

27 S H Lee 27 Di-bayron (Conf 1) – (qq) (qq) (qq) ud  0+0+ us H di-baryon  could be bound  unfortunately not found in elementary processes ds ud s ud s H di-baryon CFL like state 2SC like state

28 S H Lee 28 Di-baryon (Conf 2) – (qq) (qq) (qQ) ud  0+0+ us H c di-baryon  new prediction  could be found in heavy ion collision uc ud u u c s H c di-baryon P cc

29 S H Lee 29 Some prediction for Heavy Ion 1.Large number of c and b quark produced 2.Vertex detector 3.High density matter: favors multiquark production 4.Example: FAIR 10 4 / Month D 0  k -  + SHL, K. Ohnishi, Yasui, In-Kwon Yoo, C.M.Ko: PRL 100, 222301(08) SHL, S. Yasui, W.Liu, C.M.Ko: EPJ C54, 259 (08)

30 S H Lee 30 Suppression of p-wave resonance (Muller and Kadana En’yo) Coalescence model = Statistical model + overlap Quark number scaling of v2 P T dependence of ratio v4   Success of Coalescence model

31 S H Lee 31 RHIC (Au+Au)LHC (Pb+Pb) N u =N d 245662 NcNc 320 V C (fm 3 )10002700 N u /V c (fm -3 )0.245 Multiquark production in a simple coalescence model

32 S H Lee 32 T cc /D > 0.34 x 10 -4 RHIC > 0.8 x 10 -4 LHC  c /D > 0.8 x 10 -4 H c /D s > 0.25 x 10 -3 Production ratios for predicted Multiquarks  c Dx   c D s x    c production at RHIC and LHC  H c production at RHIC and LHC  T cc production

33 S H Lee 33 2.Diquarks are unique features of QCD, Mutltiquark states will exits in Heavy sector, due to diquark structure T cc (ud cc)  cs (udusc), H c (udusuc)… RHIC, LHC can be a very useful heavy exotic factory  If found, it will be the first exotic ever,  will tell us about QCD, q-q interaction and dense matter  great step forward in QCD 1.QCD sum rule analysis suggests that recently measured X,Y,Z most likely exotic states 3.If diquarks exists near Tc, additional production of T cc and  cs.  c/D enhancement can be a signature of sQGP  LHC plans to measure  c and D, But all can be measured at KEK and J-PARK Summary 4. Multiquark states are doorway to dense QCD.

34 S H Lee 34 Back ups

35 S H Lee 35 Hadronization through coalescence : c / D ratio ud d u d u u s d s c c d u d u u s d s c d u d u c ud c production through 3-body coalescence c production through 2-body coalescence c c c c u c u D meson production through 2-body coalescence D meson production through 2-body coalescence of diquark and c  suppressed c

36 S H Lee 36 S=C=0(ud)  A S=-1, m s =5/3m u (us)  3/5 A(ds)  3/5 A C=1, m c =5m u (uc)  1/5 A(dc)  1/5 A(sc)  3/25 A diquark – anti-diquark (Tetra-quark) - II L=1 Z(4248) ? 1-1- uc dc u c c d  0-0- 0-0- L=1

37 S H Lee 37 S=C=0(ud)  -A S=-1, m s =5/3m u (us)  -3/5 A(ds)  -3/5 A C=1, m c =5m u (uc)  -1/5 A(dc)  -1/5 A(sc)  -3/25 A Pentaquark – general considerations  d  1/2 +   d L=1  d   d L 2 contribution  - 500 MeV in Full quark model by Hiyama, Hosaka et al + 1540 can not be a pentaquark state, if it exists ?  PK


Download ppt "1 Heavy multiquark systems from heavy ion collisions Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark."

Similar presentations


Ads by Google