Presentation is loading. Please wait.

Presentation is loading. Please wait.

Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Classification Theory and Universal Constructions.

Similar presentations


Presentation on theme: "Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Classification Theory and Universal Constructions."— Presentation transcript:

1 Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola.ch www.encyclospace.org Classification Theory and Universal Constructions in Categories of Musical Objects Classification Theory and Universal Constructions in Categories of Musical Objects

2 Contents Enumeration of classical objects Local classification techniques Globalization and general addresses Resolutions for global classification Enumeration of classical objects Local classification techniques Globalization and general addresses Resolutions for global classification

3 Enumeration C  Ÿ  (chords) M  – 2 (motives) Enumeration = calculation of the number of orbits of a set C of such objects under the canonical left action G ¥ C  C of a subgroup G  Aff*(F) =  e F  GL(F) Ambient module F = Ÿ   – 2 in the above examples

4 Enumeration 1973 A. Forte (1980 J.Rahn) List of 352 orbits of chords under the translation group T 12 = e Ÿ  and the group TI 12 = e Ÿ . ± 1 of translations and inversions on Ÿ  1978 G. Halsey/E. Hewitt Recursive formula for enumeration of translation orbits of chords in finite abelian groups F Recursive formula for enumeration of translation orbits of chords in finite abelian groups F Enumeration of orbit numbers for chords in cyclic groups Ÿ n, n c 24 Enumeration of orbit numbers for chords in cyclic groups Ÿ n, n c 24 1980 G. Mazzola List of the 158 affine orbits of chords in Ÿ  List of the 158 affine orbits of chords in Ÿ  List of the 26 affine orbits of 3-elt. motives in ( Ÿ   2 and 45 in Ÿ  ¥  Ÿ  List of the 26 affine orbits of 3-elt. motives in ( Ÿ   2 and 45 in Ÿ  ¥  Ÿ  1989 H. Straub /E.Köhler List of the 216 affine orbits of 4-element motives in ( Ÿ   2 1991... H. Fripertinger Enumeration formulas for T n, TI n, and affine chord orbits in Ÿ n, n-phonic k-series, all-interval series, and motives in Ÿ n  ¥  Ÿ m Enumeration formulas for T n, TI n, and affine chord orbits in Ÿ n, n-phonic k-series, all-interval series, and motives in Ÿ n  ¥  Ÿ m Lists of affine motive orbits in ( Ÿ   2 up to 6 elements, explicit formula... Lists of affine motive orbits in ( Ÿ   2 up to 6 elements, explicit formula...

5 Enumeration x^144 + x^143 + 5x^142 + 26x^141 + 216x^140 + 2 024x^139 + 27 806x^138 + 417 209x^137 +6 345 735x^136 + 90 590 713x^135 + 1 190 322 956x^134 + 14 303 835 837x^133 +157 430 569 051x^132 + 1 592 645 620 686x^131 + 14 873 235 105 552x^130 + 128 762 751 824 308x^129 + 1 037 532 923 086 353x^128 + 7 809 413 514 931 644x^127 +55 089 365 597 956 206x^126 + 365 290 003 947 963 446x^125 +2 282 919 558 918 081 919x^124 + 13 479 601 808 118798 229x^123 +75 361 590 622 423 713 249x^122 + 399 738 890 367 674230 448x^121 +2 015 334 387 723 540 077 262x^120 + 9 673 558 570 858 327 142 094x^119 + 44 275 002 111 552 677 715 575x^118 + 193 497 799 414 541 699 555 587x^117 +808 543 433 959 017 353 438 195x^116 + 3 234 171 338 137 153 259 094292x^115 +12 397 650 890 304 440 505 241198x^114 + 45 591 347 244 850 943 472027 532x^113 + 160 994 412 344 908 368 725 437 163x^112 + 546 405 205 018 625 434 948486 100x^111 +1 783 852 127 215 514 388 216 575 524x^110 + 5 606 392 061 138 587 678 507 139 578x^109 +16 974 908 597 922 176 404 758662 419x^108 +49 548 380 452 249 950 392 015617 673x^107 + 139 517 805 378 058 810 895 892 716 876x^106 +379 202 235 047 824 659 955 968 634 895x^105 +995 405 857 334 028 240 446 249 995 969x^104 + 2 524 931 913 311 378 421 460 541 875 013x^103 +6 192 094 899 403 308 142 319 324 646 830x^102 + 14 688 225 057 065 816 000 841247 153 422x^101 +33 716 152 882 551 682 431 054950 635 828x^100 + 74 924 784 036 765 597 482 162224 697 378x^99 +161 251 165 409 134 463 248 992 354 275 261x^98 + 336 225 833 888 858 733 322 982 932 904 265x^97 +679 456 372 086 288 422 448 712 466 252 503x^96 + 1 331 179 830 182 151 403 666 404 596 530 852x^95 +2 529 241 676 111 626 447 928 668 220 456 264x^94 + 4 661 739 558 127 027 290 220 867 616 981 880x^93 +8 337 341 899 567 786 249 391 103 289 453 916x^92 + 14 472 367 067 576 451 752 984797 361 008 304x^91 +24 388 618 572 337 747 341 932969 998 362 288x^90 + 39 908 648 567 034 355 259 311114 115 744 392x^89 +63 426 245 036 529 210 051 949169 850 308 102x^88 + 97 921 220 397 909 924 969 018620 386 852 352x^87 +146 881 830 585 458 073 270 850 321 720 445 928x^86 + 214 098 939 483 879 341 610 433 150 629 060 274x^85 +303 306 830 919 747 863 651 620 555 026 700 930x^84 + 417 668 422 888 061 171 460 770 548 484 103 836x^83 +559 136 759 653 084 522 330 064 385 877 590 780x^82 + 727 765 306 194 069 123 565 702 210 626 823 392x^81 +921 077 965 629 957 077 012 552 741 715 036 692x^80 + 1 133 634 419 214 796 834 928 853 170 296 724314x^79 +1 356 926 047 220 511 677 349 073 201 120 481570x^78 + 1 579 704 950 475 555 411 914 967 237 903 930342x^77 +1 788 783 546 844 376 088 722 000 995 922 467990x^76 + 1 970 254 341 437 213 013 502 048 964 983 877090x^75 +2 110 986 794 386 177 596 749 436 553 816 924660x^74 + 2 200 183 419 494 435 885 449 671 402 432 366956x^73 +2 230 741 522 540 743 033 415 296 821 609 381912x^72 + …. …...+ 2024.x 5 + 216.x 4 + 26.x 3 + 5.x 2 + x + 1 = cycle index polynomial 2 230 741 522 540 743 033 415 296 821 609 381 912.x 72 ª 2.23.10 36.x 72 average # of stars in a galaxis = 100 000 000 000

6 Enumeration Polya-de-Bruijn theory: Cycle index polynomial Identify subsets C  F (usually F = Ÿ n ) with their characteristic function  C : F  For a permutation g in the group G  Aff*(F), we have cycle index cyc(g) = (c1,…cf), f = #F Take indeterminates X 1,…X f, set X g = X 1 c1... X f cf  G Cycle index polynomial is Z(G) = (#G) -1  G X g

7 Enumeration Polya-de-Bruijn theory: Configuration counting series Consider polynomial Polya weights w(0), w(1) in – [x] For  : F , we have G-invariant product  w  =  F w(  (t))  2 F /G The configuration counting series is C(G,F,w) =  2 F /G  w 

8 Enumeration Facts For w(0) = 1, w(1) = x, the x k coefficient of C(G,F,w) is the number of G-orbits of k-element sets in F For w(0) = 1, w(1) = x, the x k coefficient of C(G,F,w) is the number of G-orbits of k-element sets in F For the constant weight w(0) = w(1) = 1, C(G,F,w) = # 2 F /G (Main) Theorem C(G,F,w) = Z(G)(w(0)+w(1), w(0) 2 +w(1) 2,…,w(0) f +w(1) f ) Corollary C(G,F,w) = Z(G)(w(0)+w(1), w(0) 2 +w(1) 2,…,w(0) f +w(1) f ) Corollary # 2 F /G = Z(G)(2,2,…,2) # 2 F /G = Z(G)(2,2,…,2)

9 Enumeration From generalizations of the main theorem by N.G. de Bruijn, we have (for example) the following enumerations: k = 0123456789101112 T 12 11619436680664319611 TI 12 11612293850382912611 Aff*( Ÿ 12 )115921253425219511 k# of orbits of (k,12)-series 26 330 4275 52 000 614 060 k# of orbits of (k,12)-series 783 280 8416 880 91 663 680 104 993 440 119 980 160 129 985 920 (dodecaphonic)

10 Local Techniques Categories of local compositions Fix commutative ring R For any two (left) R-modules A,B, let A@B = e B.Lin(A,B) be the R-module of R-affine morphisms F(a) = e b.F 0 (a) = b + F 0 (a) F 0 = linear part, e b = translation part The category Loc R of local compositions over R has as objects the couples (K,A) of subsets K of R-modules A, and as morphisms f: (K,A)  L,B) set maps f: K  L which are induced by affine morphism F in A@B.

11 Local Techniques Local Classification: Calculate the isomorphism classes in Loc R ! For finite local compositions, we have this procedure: Represent (K,A) by an affine k: R n  A with K = {k(e 0 ),k(e 1 ),…,k(e n )} for #K = n+1 Then identify K to the orbit k. S n+1 of the right action of the symmetric group of the affine basis e 0 = 0, e 1,..., e n Get rid of the translations within A by taking the linear part k 0 of k, corresponding to the passage to the difference dK = {k(e 1 ) - k(e 0 ),…,k(e n ) - k(e 0 )} Take the induced right linear action of S n+1 and the left action of GL(A) on Lin(R n,A).

12 Local Techniques Proposition Let Gen(R n,A)  Lin(R n,A) be the subset of difference maps dk: R n  A with dk = surjective dk = surjective dk(e s ) π 0 and dk(e s ) π dk(e t ) for all s π t. dk(e s ) π 0 and dk(e s ) π dk(e t ) for all s π t. Take the induced right linear action of S n+1 and the left action of GL(A) on Gen(R n,A) Take the induced right linear action of S n+1 and the left action of GL(A) on Gen(R n,A) Let LoClass(A,n+1,R) be the set of isomorphism classes of local compositions K of cardinality n+1 and ambient space A local compositions K of cardinality n+1 and ambient space A K is generating, i.e. A = R.K =  s,t  R.(k s - k t ) K is generating, i.e. A = R.K =  s,t  R.(k s - k t ) Then we have a canonical bijection LoClass(A,n+1,R) @ GL(A)\Gen(R n,A)/ S n+1

13 Local Techniques Let X n (R,A) be the set of submodules V  R n with R n /V @ A R n /V @ A e s, e s -e t œ V for all s π t together with the above right action of S n+1 e s, e s -e t œ V for all s π t together with the above right action of S n+1 Sending dk: R n  A to ker(dk) induces a bijection GL(A)\Gen(R n,A)/ S n+1 @ X n (R,A)/ S n+1 GL(A)\Gen(R n,A)/ S n+1 @ X n (R,A)/ S n+1 Let X n (R,r) be the S n+1 -stable set of submodules V  R n with R n /V = locally free of rank r R n /V = locally free of rank r e s, e s -e t œ V for all s π t e s, e s -e t œ V for all s π t X n (R,r) =  Grass n,r (R) - V n (R,r) V n (R,r) = closed, S n+1 -stable subscheme of Grass n,r (R)

14 Local Techniques Theorem (local geometric classification) There is a quotient scheme, i.e., an exact sequence X n,r ¥S n+1 X n,r ¥ S n+1 X n,r X n,r /S n+1 pr 1  Its R-valued points are the orbits of X n,r, and if R is semi-simple, X n,r (R) = X n (R,r)

15 Local Techniques Application to orbit algorithms for rings Application to orbit algorithms for rings R of finite length R of finite length R local R local self-injective self-injective E.g. R = E.g. R = Ÿ s n, s = prime subspace V  R n subgroup G  S n+1 subspace V  R n subgroup G  S n+1 soc(R n )  V V/soc (R n )  R/soc(R)) n soc(V) π  soc(R n ) V = soc(V) V   R/Rad(R)) n soc(V) π  soc(R n ) V π soc(V) I(V)  R n (direct factor) I(V) R m m < n I(V) @ R m m < n G := Iso(I(V)) V  R m I(V)  R n (direct factor) I(V) R m m < n I(V) @ R m m < n G := Iso(I(V)) V  R m

16 Local Techniques Classes of 3-element motives M  ( Ÿ 12 ) 2 1 2 3456 789101112 13 14 15161718 19 20 21222324 25 26 generic

17 K Globalization local iso  C i  K i  K t  C t K it  K ti 

18 Globalization I IV II VI V III VII The class nerve cn(K) of global composition is not classifying 10 15 5 5 5 5 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6

19 Globalization M  B M  @B A = address of the composition M  A@B M  A@B (A= R)

20 Classify! Globalization The category Loc A of local A-addressed compositions has as objects the couples (K, A@C) of sets K of affine morphisms in A@C and as morphisms f: (K, A@C)  L, A@D) set maps f: K  L which are naturally induced by affine morphism F in C@D The category Glob A of global A-addressed compositions has as objects K I coverings of sets K by atlases I of local A- addressed compositions with manifold gluing conditions and manifold morphisms f  : K I  L J, including and compatible with atlas morphisms  : I  J

21 Resolutions Standard A-addressed local compositions 0 c n, A + n = R n ≈ A n+1 e i canonical linear basis of R n a  A,  0  c i c n, a i = (0,…,a,…,0)  i : A  A + n  0 (a) = (0, a 0 ) i = 0  i (a) = (e i, a i ) 0 < i A  n  A@A + n AnAnAnAn s. S s 0, s 1,…, s n  A@B, S = {s 0, s 1,…, s n }  A@B s 0, s 1,…, s n  A@B, S = {s 0, s 1,…, s n }  A@B s. : A  n  S:  i  s i s 0, s 1,…, s n  A@B, S = {s 0, s 1,…, s n }  A@B s 0, s 1,…, s n  A@B, S = {s 0, s 1,…, s n }  A@B s. : A  n  S:  i  s i universal property

22 Resolutions Standard A-addressed global compositions n* = covering of an interval [0,m] by non-empty subsets A  n* n* induces a A-addressed global standard composition A  n* A  m which is canonically deduced from A  m by the n*-charts Choose enumeration K = {k 0,k 1,…,k m } of the global compostition K I. Call n*(K I ) the covering of [0,m] corresponding to the atlas I.  K I = A  n*(K I ) is the resolution ofK I  K I = A  n*(K I ) is the resolution of K I res(K I ) :  K I  K I A  m i  K i A  m i  K i res(K I ) :  K I  K I A  m i  K i A  m i  K i universal morphism, natural in K I  

23 Resolutions Represent K I by module complexes of function in  K I A module complex M on K I is a „coefficient system“ on the nerve n(K I ), i.e. a functor M(  ) = R-module for simplex  affine transition morphisms M  : M(  )  M(  ),     Important Examples: Function complex n  (K I ): For simplex , take local composition   K i n  (K I )(  ) = Loc R ( , A@R) N  f   n  ( L J )  n  (K I ) subcomplex; for morphism f  : L J  K I  of global compositions, we have induced function complex N  f   n  ( L J )

24 Resolutions The resolution complex of K I res(K I ):  K I  K I  n  (K I ) = n  (K I )  res(K I ) Classification Strategy: Reconstruct K I from its resolution complex Reconstruct K I from its resolution complex Classify a relevant set of module complexes Classify a relevant set of module complexes Res A,n* = {N  n  ( A  n* ), properties…} which relate to resolution complexes of global compositions K I with n*(K I ) @ n*

25 Resolutions Reconstruction of K I e N,  (s) (a)(l) = l(s)(a) Local construction for simplex  of the resolution A  n* and module N(  ): e N,  : A    A@N(  )* e N,  (s) (a)(l) = l(s)(a) for a function l in N(  ) Have local compositions  /N  =  Im(e N,  )  A@N(  )*, and canonical local morphisms  /N  /N for   A  n* /N  =  colim n*  /N Global construction: A  n* /N  =  colim n*  /N

26 Resolutions Proposition 1. Let K I have these properties (*) the chart modules R.K i are projective of finite type the chart modules R.K i are projective of finite type the function modules n  (K I )  K i ) are projective the function modules n  (K I )  K i ) are projective Then A  n* /  n  (K I )  @  K I 2. Res A,n* = {N  n  ( A  n* ), Const  N  0 ) = projective of finite type N separates points of A  n* } Then we have a canonical bijection Res A,n* /Aut( A  n* ) @ IsoClasses[K I with (*) and n*(K I ) @ n*]

27 Resolutions Theorem (global addressed geometric classification) Let A be locally free of a defined rank. Then there is a subscheme J n* of a projective R-scheme of finite type such that its S-valued points a subscheme J n* of a projective R-scheme of finite type such that its S-valued points  : Spec(S)  J n* are in bijection with the classifying orbits of module complexes N in S ƒ R A  n* which are locally free of defined co-ranks on the zero simplexes of n*. Res n*,r ¥ Aut( A  n* ) Res n*,r Res n*,r / Aut( A  n* ) = J n* pr 1 


Download ppt "Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Classification Theory and Universal Constructions."

Similar presentations


Ads by Google