Download presentation
Presentation is loading. Please wait.
Published byLorin Lang Modified over 9 years ago
1
Architectural Pattern of an Animal Chapter 9
2
The Appearance of Major Body Plans The Cambrian explosion marks the earliest fossil appearance of all major groups of living animals plus some groups that are only known from fossils. All major body plans appeared at this time. Result of extensive selection. Are limiting determinant of future adaptational variants.
3
Animal Body Plans A group of animal species that share the same level of organizational complexity is known as a grade. Body plans are constrained by ancestry, major features may become modified, but are rarely lost. Animal body plans differ in their grade of organization, body symmetry, number of germ layers, and type of body cavity.
4
Hierarchical Organization – 5 Levels Protoplasmic grade of organization – protists are the simplest eukaryotes, but they still carry out life functions and show division of labor among the various cell structures. Metazoans are multicellular animals that have cells specialized for particular functions. This is the Cellular grade of organization. Shown by the simplest metazoans – Volvox, sponges.
5
Hierarchical Organization – 5 Levels Cell-tissue Grade – Usually, specialized cells are grouped together and perform their common function as a coordinated unit, a tissue. Jellyfish Tissue-organ Grade – Tissues are then assembled into organs like the heart (primarily muscle tissue, but connective, nervous, and epithelial also present). Flatworms
6
Hierarchical Organization – 5 Levels Organ-system grade – In the highest level of organization, organs work together as organ systems like the circulatory system.
7
Symmetry Spherical symmetry occurs when any plane passing through the center divides the body into mirror image halves. Mostly found among the protists.
8
Symmetry Radial symmetry applies when more than two planes passing through the longitudinal axis can divide the organism into mirror image halves. Jellyfish Biradial symmetry – two planes will divide the organism. Comb jellies
9
Symmetry Bilateral symmetry is found in organisms where one plane can pass through the organism dividing it into right and left halves. Better for directional movement. Monophyletic group called Bilateria.
10
Cephalization Bilateral symmetry is associated with cephalization, differentiation of a head. Nervous tissue, sense organs, and often the mouth are located in the head. Advantages for organisms moving head first – directional movement. Elongation along anteroposterior axis.
11
Regions of a Bilaterally Symmetrical Animal Anterior-posterior (transverse plane) Dorsal-ventral (frontal plane) Left-right (sagittal plane) Proximal-distal Medial-lateral
12
Body Cavities In protostomes, mesoderm forms as endodermal cells from near the blastopore (external opening) migrate into the blastocoel. Three body plans possible: Acoelomate (no body cavity) Pseudocoelomate (body cavity between endoderm & mesoderm) Coelomate (body cavity surrounded by mesoderm)
13
Developmental Patterns Sponges develop only to blastula stage, then reorganize to form adult. Gastrulation allows animals to proceed to tissue level organization. Diploblastic – 2 germ layers Cnidarians, Ctenophores Triploblastic – 3 germ layers
14
Other Key Features of Body Plans In some organisms, the gut does not form a complete tube. Waste must come back out the mouth. Food must be digested & waste expelled before eating again. A complete gut forms a tube within a tube body plan.
15
Other Key Features of Body Plans Segmentation is a serial repetition of similar body segments along the body. Each segment is a metamere or somite. May include external & internal components. Obscured in many animals, like humans. Permits greater body mobility and complexity of structure & function.
16
9-16 Components of Metazoan Bodies Extracellular Components - noncellular components of metazoan animals: Body fluids Extracellular structural elements
17
Tissue Structure and Function A tissue is a group of similar cells specialized for performing a common function. Different types of tissues have different structures that are suited to their functions. Tissues are classified into four main categories: Epithelial Connective Muscle Nervous Cellular Components - Tissues
18
Epithelial Tissue Epithelial tissue covers the outside of the body and lines organs and cavities within the body.
19
Connective Tissue Connective tissue functions mainly to bind and support other tissues. Contains sparsely packed cells scattered throughout an extracellular matrix.
20
Muscle Tissue Muscle tissue is composed of long cells called muscle fibers capable of contracting in response to nerve signals. Smooth Skeletal Cardiac
21
Nervous Tissue Nervous tissue senses stimuli and transmits signals throughout the animal. A neuron (nerve cell) receive signals at the dendrites and send them out via the axons.
22
Complexity and Body Size Increased complexity allows for an increase in body size. Larger size decreases the surface area to volume ratio. Necessitates complex systems for respiration, nutrition, and excretion – diffusion not adequate. Buffers environmental fluctuation. Escape predators.
23
Complexity and Body Size Cost of maintaining body temperature is less per gram of body weight than in small animals. Energy costs of moving a gram of body weight over a given distance less for larger animals.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.