Download presentation
Presentation is loading. Please wait.
Published byBlake Bryan Modified over 8 years ago
1
Section 3.5 Trigonometric Functions Section 3.5 Trigonometric Functions
2
Objectives: 1.To define the trigonometric functions. 2.To determine periods, amplitudes, phase shifts, domains, and ranges for trigonometric functions. 3.To graph trigonometric functions. Objectives: 1.To define the trigonometric functions. 2.To determine periods, amplitudes, phase shifts, domains, and ranges for trigonometric functions. 3.To graph trigonometric functions.
3
Sine function f(x) = sin x where x is an angle measured in radians. Cosine function f(x) = cos x where x is an angle measured in radians. Sine function f(x) = sin x where x is an angle measured in radians. Cosine function f(x) = cos x where x is an angle measured in radians. DefinitionDefinition
4
Tangent function f(x) = tan x where x is an angle measured in radians. DefinitionDefinition
5
EXAMPLE 1 Find the set of ordered pairs described by y = sin x when the domain is {0.1745, 0.3840, 1.2392}. y = sin x y = sin 0.1745 ≈ 0.1736 y = sin 0.3840 ≈ 0.3746 y = sin 1.2392 ≈ 0.9455 {(0.1745, 0.1736), (0.3840, 0.3746), (1.2392, 0.9455)} y = sin x y = sin 0.1745 ≈ 0.1736 y = sin 0.3840 ≈ 0.3746 y = sin 1.2392 ≈ 0.9455 {(0.1745, 0.1736), (0.3840, 0.3746), (1.2392, 0.9455)}
6
22 2 33 2 1 Sine function
7
Domain = {all real numbers} Range = [-1, 1] Period = 2 Sine function Domain = {all real numbers} Range = [-1, 1] Period = 2
8
22 2 33 2 1 Cosine function
9
Domain = {all real numbers} Range = [-1, 1] Period = 2 Cosine function Domain = {all real numbers} Range = [-1, 1] Period = 2
10
Tangent function 1 vertical asymptotes vertical asymptotes 22 2 33 2
11
Tangent function Domain = { | real numbers but / 2 + k , k integers} Range = {all real numbers} Period = Tangent function Domain = { | real numbers but / 2 + k , k integers} Range = {all real numbers} Period =
12
Amplitude The amplitude of a function is the absolute value of half the difference between the maximum and minimum values of the function. 2 2 m m m m A A 2 2 1 1 - - = = DefinitionDefinition
13
Sine function f(x) = sin x Range = [-1, 1] 2 2 m m m m A A 2 2 1 1 - - = = 2 2 (-1) 1 1 - - = = 2 2 2 2 = = = 1 f(x) = A sin x Amplitude = A A
14
EXAMPLE 2 Graph y = 2 sin . 22 -- -2 2 -2 y = sin
15
EXAMPLE 2 Graph y = 2 sin . y = 2 sin Amplitude = |2| = 2 y = 2 sin Amplitude = |2| = 2 22 -- -2 2 -2 y = 2 sin
16
The general form of the sine function is y = A sin (n – b). The general form of the cosine function is y = A cos (n – b). The general form of the tangent function is y = A tan (n – b).
17
The period of a function is the length of a cycle for the values of a periodic function. The period of a sine or cosine function will be where n is the coefficient of the in the equation. The period of a function is the length of a cycle for the values of a periodic function. The period of a sine or cosine function will be where n is the coefficient of the in the equation. n n 22 22 DefinitionDefinition
18
DefinitionDefinition The period of a function is the length of a cycle for the values of a periodic function. The period of a tangent function will be where n is the coefficient of the in the equation. The period of a function is the length of a cycle for the values of a periodic function. The period of a tangent function will be where n is the coefficient of the in the equation. |n| |n|
19
EXAMPLE 3 Graph y = cos 2 . 22 -- -2 2 -2 y = cos
20
EXAMPLE 3 Graph y = cos 2 . y = cos 2 period: 2 /2 = y = cos 2 period: 2 /2 = 22 -- -2 2 -2 y = cos 2
21
The phase shift is the horizontal translation of a trigonometric function. The phase shift of a trigonometric function in general form is. The phase shift is the horizontal translation of a trigonometric function. The phase shift of a trigonometric function in general form is. n n b b DefinitionDefinition
22
EXAMPLE 3 Graph y = cos ( – ). 22 -- -2 2 -2 y = cos
23
EXAMPLE 3 Graph y = cos ( – ). y = cos ( – ) phase shift: /1 units to the right y = cos ( – ) phase shift: /1 units to the right 22 -- -2 2 -2 y = cos ( - )
24
Amplitude stretches or shrinks the graph vertically (Amp. = |A|). Period stretches or shrinks the graph horizontally (Per. = 2 /n). Phase Shift moves the graph right or left (Phase shift = b/n). When y = A sin (n - b) or y = A cos (n - b) When y = A sin (n - b) or y = A cos (n - b)
25
22 2 33 2 1 ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = = ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = =
26
22 2 33 2 1 ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = =
27
22 2 33 2 1 ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = = ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = =
28
22 2 33 2 1 ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = = ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = =
29
22 2 33 2 1 ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = = ) ) 2 2 sin( 2 2 1 1 y y Graph - - - - = =
30
Homework: pp. 140-141 Homework: pp. 140-141
31
►A. Exercises 1.Find the set of ordered pairs described by y = cos x when the domain is {0.1745, 0.3840, 1.239, 0.7854, 1.396}. ►A. Exercises 1.Find the set of ordered pairs described by y = cos x when the domain is {0.1745, 0.3840, 1.239, 0.7854, 1.396}.
32
►A. Exercises 3.Without graphing, give the amplitude, period, and phase shift for y = 3 cos . ►A. Exercises 3.Without graphing, give the amplitude, period, and phase shift for y = 3 cos .
33
►A. Exercises 9.Without graphing, give the amplitude, period, and phase shift for y = 2 cos(2 + ). ►A. Exercises 9.Without graphing, give the amplitude, period, and phase shift for y = 2 cos(2 + ).
34
►B. Exercises 11.Write the equation of the sine function with amplitude = 2, period = 4 , and phase shift = / 2. ►B. Exercises 11.Write the equation of the sine function with amplitude = 2, period = 4 , and phase shift = / 2.
35
►B. Exercises 16.Give the zeros of f(x) = sin x. ►B. Exercises 16.Give the zeros of f(x) = sin x.
36
►B. Exercises 17.Give the zeros of g(x) = cos x. ►B. Exercises 17.Give the zeros of g(x) = cos x.
37
►B. Exercises 18.Give the zeros of h(x) = tan x. ►B. Exercises 18.Give the zeros of h(x) = tan x.
38
►B. Exercises 19.Give the domain and range for the general function f(x) = A sin (nx - b). Assume A > 0. ►B. Exercises 19.Give the domain and range for the general function f(x) = A sin (nx - b). Assume A > 0.
39
►B. Exercises 20.Give the domain and range for the general function h(x) = A tan (nx - b). Assume A > 0. ►B. Exercises 20.Give the domain and range for the general function h(x) = A tan (nx - b). Assume A > 0.
40
►B. Exercises Graph. 22.y = 3 sin 2 ►B. Exercises Graph. 22.y = 3 sin 2
41
►B. Exercises Graph. 24.y = -tan ½ ►B. Exercises Graph. 24.y = -tan ½
42
►B. Exercises Graph. 26.y = 4 cos ( + ) ►B. Exercises Graph. 26.y = 4 cos ( + )
43
■ Cumulative Review 36.Write a polynomial function with roots of multiplicity 2 at -3 and at 4. ■ Cumulative Review 36.Write a polynomial function with roots of multiplicity 2 at -3 and at 4.
44
■ Cumulative Review If P ( x ) is a quadratic function, and Q ( x ) is a cubic polynomial function, find the following. 37. The degree of P ( x ) + Q ( x ). ■ Cumulative Review If P ( x ) is a quadratic function, and Q ( x ) is a cubic polynomial function, find the following. 37. The degree of P ( x ) + Q ( x ).
45
■ Cumulative Review If P ( x ) is a quadratic function, and Q ( x ) is a cubic polynomial function, find the following. 38. The degree of P ( x ) Q ( x ). ■ Cumulative Review If P ( x ) is a quadratic function, and Q ( x ) is a cubic polynomial function, find the following. 38. The degree of P ( x ) Q ( x ).
46
■ Cumulative Review If P ( x ) is a quadratic function, and Q ( x ) is a cubic polynomial function, find the following. 39. The degree of Q ( x )/ P ( x ) if the remainder is zero and P ( x ) ≠ 0. ■ Cumulative Review If P ( x ) is a quadratic function, and Q ( x ) is a cubic polynomial function, find the following. 39. The degree of Q ( x )/ P ( x ) if the remainder is zero and P ( x ) ≠ 0.
47
■ Cumulative Review 40. When is the sum of two quadratic functions not quadratic? ■ Cumulative Review 40. When is the sum of two quadratic functions not quadratic?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.