Download presentation
Presentation is loading. Please wait.
Published byKory Adams Modified over 8 years ago
1
HES-HKS & KaoS meeting
2
Contents
3
Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix sample 8 (dist8)
4
Differential non-linearity (older sample) Missing mass [GeV/c 2 ]
5
Before and after the optimization (dist6)
6
Standard deviation due to matrices (dist6) σ = sqrt(σ mat +σ stat ) σ mat = sqrt(σ-σ stat )
7
Results for (dist8) (g.s. fitting mean )– M gen [keV] A σ mat [keV] B Lambda21.2 Sigma44.3 7 Λ He23.0 9 Λ Li17.5 10 Λ Be19.9 12 Λ B15.6 52 Λ Cr5.2
8
Results for (dist7) (g.s. fitting mean )– M gen [keV] A σ mat [keV] B Lambda6.8 Sigma26.7 7 Λ He16.6 9 Λ Li29.1 10 Λ Be24.2 12 Λ B26.6 52 Λ Cr27.6
9
Results for (dist6) (g.s. fitting mean )– M gen [keV] A σ mat [keV] B Lambda32.9 Sigma43.0 7 Λ He32.8 9 Λ Li29.2 10 Λ Be9.6 12 Λ B33.0 52 Λ Cr37.0
10
Summary 1 [Systematic errors] 5% of target thickness uncertainty Λ, Σ 0 : < 50 keV Hypernucleus : < 20 keV
11
Decomposition of 1 - and 2 - -B Λ [MeV] Counts Chunhua’s spectrum
12
Test conditions Common conditions for tests N point = 100 Step = 0.002 MeV Mean1: -11.45 – Step * i (i<N point ) Mean2: -11.45 + Step * i (i<N point ) Parameters Chunhua’s spectrum σ = 0.231 (fixed) Han’s spectrum σ = 0.300 (fixed) Toshi’s spectrum σ = 0.210 (fixed)
13
Definition
14
Chunhua2009 (fixed at σ=0.231) No cut Amp1>Amp2 Amp1<Amp2 Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV]
15
Han2005 (fixed at σ=0.300) No cut Amp1>Amp2 Amp1<Amp2 Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV]
16
Toshi2009(fixed at σ=0.210) No cut Amp1>Amp2 Amp1<Amp2 Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV]
17
Simulation
18
Generated dummy data -B Λ [MeV] [Counts/240 keV] SIMULATION
19
Test conditions (Simulation) N point = 100 Step = 0.002 MeV Mean1: -11.32 – Step * i (i<N point ) Mean2: -11.32 + Step * i (i<N point )
20
Fitting results (1) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 160 keV σ = 170 keV σ = 180 keV Assumed width for fitting SIMULATION
21
Fitting results (2) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 190 keV σ = 195 keV SIMULATION
22
Fitting results (3) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 205 keV σ = 210 keV σ = 220 keV SIMULATION
23
Scan by changing assumed width 1.Chunhua2009 2.Toshi2009
24
Chunhua2009 scan (1) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 190 keV σ = 200 keV σ = 210 keV Assumed width for fitting
25
Chunhua2009 scan (2) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 220 keV σ = 230 keV σ = 240 keV Assumed width for fitting
26
Chunhua2009 scan (3) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 250 keV
27
Toshi2009 scan (1) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 190 keV σ = 200 keV σ = 205 keV Assumed width for fitting
28
Toshi2009 scan (2) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 210 keV σ = 215 keV σ = 220 keV Assumed width for fitting
29
Toshi2009 scan (2) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 230 keV σ = 240 keV σ = 250 keV Assumed width for fitting
30
Summary 2 [About 12 Λ B(1 -,2 - ) separation] What we can say from this study We could not reproduce paper values…. (E01-011 data could be reproduced though) (I would like to see Hampton’s side study) What we thought from this study In the case of simple Gaussian Two separated peaks by 160 keV might be distinguished if the resolution is known. In the real case (peaks are not simple Gaussian distributions) Need to confirm whether this method works or not for peaks which affected by energy straggling, production point displacement from matrix origin, detector resolutions, spectrometer acceptance, beam raster and so on. Can be checked by blind analyses. Is there any good cut (selection) condition to find the answer ? need further study.
31
Summary 2 [ 12 Λ B の 1-,2- の分離に関して ] このスタディの結果 タン先生が論文で言っている (1-,2-) の分離は再現できな い … ( 異なる幅を仮定しても ) 思ったこと シンプルなガウシアンの場合 分解能が分かれば数 10keV の精度で 160keV の分離は分けられ るかも ? さらなるスタディが必要 実際は tail がある ( シンプルなガウシアンではない ) Energy struggling, matrix tuning 等の効果があるときに、この方 法が work するのか? Blind analysis でチェック可能 カット ( 選定 ) 条件を工夫したら、よりうまく答えが見つ かるのか?
32
END
33
Backu p
34
Fitting range -11.9 ~ -10.8 MeV Fitting range を変えると様相が変わる
35
Chunhua2009 scan (1) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 190 keV σ = 200 keV σ = 210 keV Assumed width for fitting
36
Chunhua2009 scan (2) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 220 keV σ = 230 keV σ = 240 keV Assumed width for fitting
37
Chunhua2009 scan (3) Mean1 [MeV] Mean2 [MeV] Mean1 [MeV] Mean2 [MeV] σ = 250 keV
38
|χ 2 -1.0| distribution
39
|χ 2 -1.0| distribution (Chunhua2009) Mean1 [MeV] Mean2 [MeV] σ = 231 keV (fixed) Mean1 [MeV] Mean2 [MeV] |χ 2 -1.0|
40
|χ 2 -1.0| distribution (Toshi2009) Mean1 [MeV] Mean2 [MeV] σ = 200 keV (fixed) Mean1 [MeV] Mean2 [MeV] |χ 2 -1.0|
41
Old version (Wrong…)
42
| χ 2 /NDF – 1.0 | with no cut condition Chunhua Han Mean1 [MeV] Mean2 [MeV]
43
| χ 2 /NDF – 1.0 | with no cut condition Toshi Mean1 [MeV] Mean2 [MeV]
44
| χ 2 /NDF – 1.0 | (Amp1 < Amp2) Chunhua Han Mean1 [MeV] Mean2 [MeV] Mean1 [MeV]
45
| χ 2 /NDF – 1.0 | (Amp1 < Amp2) Toshi Mean1 [MeV] Mean2 [MeV]
46
Simulation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.