Download presentation
Presentation is loading. Please wait.
Published byHortense Hardy Modified over 8 years ago
1
Intelligent Numerical Computation1 Graph bisection Problem statement Mathematical framework Methods Numerical results
2
Intelligent Numerical Computation2 T = zeros(N,N); for i = 1:N for j = 1:N if rand(1,1) > 0.5 & j~=i T(i,j) = 1; T(j,i)=1; end Graph generation
3
Intelligent Numerical Computation3 Cost 5 Cost 6 Graph Bipartition
4
Intelligent Numerical Computation4 Graph bisection Operation: partition all nodes to two sets Objective Minimization of cut size Cut size means the number of connections between two sets Constraints Two sets have equal size
5
Intelligent Numerical Computation5 Representation of Edges and Memberships
6
Intelligent Numerical Computation6 MINIMIZE SUBJECT TO Mathematical framework
7
Intelligent Numerical Computation7 Energy function
8
Intelligent Numerical Computation8 Spin model Graph bisection
9
Intelligent Numerical Computation9 A physical-like random system Boltzmann assumption S is regarded as a random vector Free energy
10
Intelligent Numerical Computation10 Entropy Entropy of the whole system Sum of individual entropies
11
Intelligent Numerical Computation11 Mean field approximation Individual entropy
12
Intelligent Numerical Computation12
13
Intelligent Numerical Computation13
14
Intelligent Numerical Computation14 Mean field approximation
15
Intelligent Numerical Computation15
16
Intelligent Numerical Computation16 Mean field equation
17
Intelligent Numerical Computation17 Mean field equations
18
Intelligent Numerical Computation18 1. Set near zero randomly 2. Set beta to a sufficiently small value 3. Employ mean field equations to determine a fixed point 4. If the halting condition holds, halt 5. Increase beta by an annealing schedule 6. Go to step 3 Procedure of mean field annealing
19
Intelligent Numerical Computation19 Flow chart Set v(i) near zero for all i beta sufficiently small and alpha near one mean(v.^2)<0.98 exit Update all vi asynchronously v(i)=tanh(beta*sum(w(i,:)*v)) beta=beta/alpha
20
Intelligent Numerical Computation20 Halting condition Mean of squares of all exceeds a predetermined threshold value
21
Intelligent Numerical Computation21 Annealing schedule Set beta to a sufficiently small value Increase beta carefully
22
Intelligent Numerical Computation22 Hopfield neural networks for TSP Problem statement Mathematical framework Mean field annealing Numerical results
23
Intelligent Numerical Computation23 KL(Kullback-Leberler) Divergence Boltzmann distribution Normalization
24
Intelligent Numerical Computation24 Intractable Partition function
25
Intelligent Numerical Computation25 Factorial distribution An approximation
26
Intelligent Numerical Computation26 KL divergence Semi-distance between two pdfs = {x}
27
Intelligent Numerical Computation27 Step 1
28
Intelligent Numerical Computation28 Step 2
29
Intelligent Numerical Computation29 Step 3
30
Intelligent Numerical Computation30 Step 4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.