Presentation is loading. Please wait.

Presentation is loading. Please wait.

And Intelligent Life in the Universe The Occurrence of Planets and Mass-Radius Relation from Kepler Keck Tel Aviv 7 December 2012 Kepler Thanks to: Shay.

Similar presentations


Presentation on theme: "And Intelligent Life in the Universe The Occurrence of Planets and Mass-Radius Relation from Kepler Keck Tel Aviv 7 December 2012 Kepler Thanks to: Shay."— Presentation transcript:

1 And Intelligent Life in the Universe The Occurrence of Planets and Mass-Radius Relation from Kepler Keck Tel Aviv 7 December 2012 Kepler Thanks to: Shay Zucker Amiel Sternberg Geoff Marcy University of California

2 And Intelligent Life in the Universe The Occurrence of Planets and Mass-Radius Relation from Kepler Keck Tel Aviv 7 December 2012 Kepler Tsevi Mazeh Thanks to: Shay Zucker Amiel Sternberg

3 Acknowledgements Acknowledgements William Borucki David Koch Stephen Bryson Jason Rowe Roger Hunter Marcie Smith Susan Thompson Bruce Clark Rob Lewis Guillermo Torres Francois Fressin Jean-Michel Désert Lars Buchhave Sam Quinn Dan Fabrycky Debra Fischer Dimitar Sasselov Natalie Batalha Thomas Gautier Steve Howell Charlie Sobeck Tsevi Mazeh David Latham Fergal Mullally Joe Twicken Elisa Quintana Ron Gilliland Eric Ford Elliott Horsch Tom Barclay Jessie Christiansen Jack Lissauer Jon Jenkins Mike Haas Doug Caldwell Jeff Kolodziejcak Martin Still Shawn Seader Jie Li David Charbonneau David Ciardi Chris Burke Leslie Rogers Martin Still Martin Stumpe Peter Tenebaum Lucianne Walkowicz Bill Cochran Mike Endl Kepler’s Heavy Lifters

4 Andrew Howard, Lauren Weiss, Howard Isaacson, Jason Rowe, John Johnson Special Thanks: Acknowledgements Acknowledgements William Borucki David Koch Stephen Bryson Jason Rowe Roger Hunter Marcie Smith Susan Thompson Bruce Clark Rob Lewis Guillermo Torres Francois Fressin Jean-Michel Désert Lars Buchhave Sam Quinn Dan Fabrycky Debra Fischer Dimitar Sasselov Natalie Batalha Thomas Gautier Steve Howell Charlie Sobeck Tsevi Mazeh David Latham Fergal Mullally Joe Twicken Elisa Quintana Ron Gilliland Eric Ford Elliott Horsch Tom Barclay Jessie Christiansen Jack Lissauer Jon Jenkins Mike Haas Doug Caldwell Jeff Kolodziejcak Martin Still Shawn Seader Jie Li David Charbonneau David Ciardi Chris Burke Leslie Rogers Martin Still Martin Stumpe Peter Tenebaum Lucianne Walkowicz Bill Cochran Mike Endl Kepler’s Heavy Lifters

5 Jupiter-size Neptune-size Earth-size Orbital Period in days Size Relative to Earth Extended mission domain Earth analogs 5 2300 Small Exoplanets

6 Jupiter-size Neptune-size Earth-size Orbital Period in days Size Relative to Earth Extended mission domain Earth analogs 6 2300 Small Exoplanets Earth-Size Close-in

7 Multiple Transits yield sufficient S/N Ratio for detection. Data binning yields obvious transit signatures Francois Fressin et al. 2012 Kepler: Hundreds of Earth-size Planets – in Tight Orbits 0.87 R 1.03 R + + P = 6.098 days P = 19.577 days

8 Jupiter-size Neptune-size Earth-size Orbital Period in days Size Relative to Earth Extended mission domain Earth analogs 8 2300 Small Exoplanets R=1-4 R Earth - Not in S.S. - Interior: Rock + ? - Formation ?

9 Define Planet Occurrence For each R PL and Period:

10 Define Planet Occurrence For each R PL and Period:

11 Define the Stellar Domain: Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15

12 Define the Survey Domain: Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15 Note: Only 59,000 Kepler Target stars meet these stellar criteria

13 Define the Survey Domain: Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15 SNR Threshold of Transit: 10 Demand SNR > 10 in Quarter 3 Note: Only 59,000 Kepler Target stars meet these stellar criteria

14 Define the Survey Domain: Stellar Parameters and SNR of Transit Stellar Domain: FGK Main Sequence Teff = 4100 – 6100 K log g = 4.0 – 4.9 Kepmag < 15 mag Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15 SNR Threshold of Transit: 10 Demand SNR > 10 in Quarter 3 SNR Depends on planet radius # of transits Photometric noise Note: Only 59,000 Kepler Target stars meet these stellar criteria

15 15 Number of Target Stars Capable of Achieving SNR > 10 in Quarter 3 mag Target Star Parameters: Teff=4100-6100 K, log g=4.0-4.9, Kepmag<15 Howard, Marcy, Kepler Team. (2011)

16 Define Planet Occurrence For each R PL and Period:

17 17 Howard, Marcy, Kepler Team (2011)

18 18 Howard, Marcy, Kepler Team (2011)

19 19 Howard, Marcy, Kepler Team (2011)

20 20 Howard, Marcy, Kepler Team (2011)

21 21 Focus on a single domain In Period and Radius Howard, Marcy, Kepler Team (2011)

22 22 Naïve: Count the planets in this domain. Focus on a single domain In Period and Radius Howard, Marcy, Kepler Team (2011)

23 23 Focus on a single domain In Period and Radius Howard, Marcy, Kepler Team (2011) Naïve: Count the planets in this domain. Best: Augment each planet by its # of “inclined” twins: a/R STAR.

24 Augment Each Transiting Planet by the # of (undetected) Inclined Twins # Planets at All Inclinations = a / R STAR a R STAR

25 25 Focus on a single domain In Period and Radius Howard, Marcy, Kepler Team (2011) Naïve: Count the planets in this domain. Best: Augment each planet by # of “inclined” twins: a/R STAR :

26 26 Focus on a single domain In Period and Radius Howard, Marcy, Kepler Team (2011) Naïve: Count the planets in this domain. Best: Augment each planet by # of “inclined” twins: a/R STAR : Typically 5-20.

27 Define Planet Occurrence within each cell:

28 Distribution of Planet Radii For Orbital Periods < 50 Days Howard, Marcy, Kepler Team, as of Sept. 2011 8% of G stars have a planet of 2.0-2.8 R Earth 10% of stars have Planets 2.0-2.8 R Earth. 1% of stars have Planets 8-11 R Earth.

29 Howard et al. Analysis: Redone with Planet Candidates through Quarter 6 from Batalha et al. 2012

30 Distribution of Planet Sizes Petigura, Howard, Marcy, Kepler Team - Nov 2012 Is Decline to 1 R Earth Real ?

31 Jupiter-size Neptune-size Earth-size Orbital Period in days Size Relative to Earth Extended mission domain Earth analogs 31 2300 Small Exoplanets Batalha et al. 2012 Earth-Size: Not many…

32 Distribution of Planet Sizes Petigura, Howard, Marcy, Kepler Team - Nov 2012 Is Decline to 1 R Earth Real ? Or is it due to Incompleteness in The Kepler pipeline? SNR (SES) ~ 1 for R=1 R Earth

33 New Kepler Pipeline by Erik Petigura New CBVs New Search Algorithm

34 Petigura’s Kepler Pipline Adopted CDPP Threshold: “Best 12,000 Kepler Stars” Best 12000

35 Planets Detected in “Best 12000” Kepler Stars Petigura et al. 2013 Now: - Assess completeness - Compute occurrence ala Howard et al.

36 Completeness Measurement Petigura et al. 2013 Detection Completeness: > 80% - Radius = 1.2 – 4 R Earth - Period > 50 d Inject Mock Transits into Actual Kepler Raw photometery

37 Planets Detected in “Best 12000” Kepler Stars Petigura et al. 2013 Now make Same corrections As in Howard et al.

38 Fressin et al. Occurrence Occurrence is Flat Shortward of 2 R Earth Agreement with Petigura & Howard

39 39 Mass-Radius Diagram 246 104 321 20b 20c Planet Mass-Radius Diagram

40 Kepler Planet Masses and Radii KOI-94

41 KOI-94 Photometry: 4 Transiting Planets P=3.74 d R=1.7 R E P=10.42 d R=4.3 R E P=22.34 d R=11.3 R E P=54.32 d R=6.56 R E Lauren Weiss et al. 2013

42 Doppler Measurements of KOI-94: Masses for two planets. Only Upper limits for two. Lauren Weiss et al. 2013

43 135 Exoplanets with Mass and Radius

44

45

46 Planet Radius vs Mass Two mass domains: M CRIT = 150 M EARTH Affect of stellar Flux on Planet: M>150 M EARTH : Bloated M<150 M EARTH : Smaller Weiss, Marcy, et al. 2013

47 Planet Radius vs Mass Weiss, Marcy, et al. 2013 Planet Radius vs Mass

48 Constant Density: R ~ M 1/3 Radius rises faster than solid interior! Implication: Admixture of more volatiles with Increasing mass. i.e. Water or H + He. Planet Radius vs Mass

49

50 Electron Degeneracy: R ~ M -1/3 Radii rises faster Than e- degeneracy. Implication: Admixture of more volatiles with Increasing mass. i.e. Water or H + He.

51 Planet Density vs Mass

52 Models: Mordasini et al. Chiang & Laughlin: Rock + Gas

53 Up next: Habitable Zone Earths Jupiter-size Neptune-size Earth-size Orbital Period in days Size Relative to Earth Extended mission domain Earth analogs 53 2300 Small Exoplanets

54 Planet R(M,Flux) becoming defined. Planet R(M,Flux) becoming defined. Two Domains: Critical Mass at 150 M Earth Two Domains: Critical Mass at 150 M Earth Radii increase faster with Mass than Expected: : Radii increase faster with Mass than Expected: : Amt. of Volatiles increases with mass. Amt. of Volatiles increases with mass. Planet Occurrence: Planet Occurrence: Rises from 20-2 R Earth Rises from 20-2 R Earth Flat from 2.0–1.2 R Earth Flat from 2.0–1.2 R Earth Questions: Questions: -Interiors 2-4 R Earth and 1-2 R Earth -Interiors 2-4 R Earth and 1-2 R Earth -Occurrence of Planets from 2 – 0.5 R Earth -Occurrence of Planets from 2 – 0.5 R Earth Summary


Download ppt "And Intelligent Life in the Universe The Occurrence of Planets and Mass-Radius Relation from Kepler Keck Tel Aviv 7 December 2012 Kepler Thanks to: Shay."

Similar presentations


Ads by Google