Download presentation
Presentation is loading. Please wait.
Published byLesley Turner Modified over 8 years ago
1
PPL Lecture 4 Slides by Yaron Gonen, based on slides by Daniel Deutch and lecture notes by Prof. Mira Balaban
3
Midterm 2010 (define foo (let((f (lambda(x ) (+ 1 x)))) (lambda(x) (f x)))) תרגמו את ביטוי ה -let לביטוי ה -anonymous lambda מהו מס ' ה -closure שיווצרו ?
4
Today: High-Order Procedures (continued) Procedures as returned values Delayed computation 4
5
Procedures as Returned Values Number (+ x y y) [Num -> Num] (lambda (x) (+ x y y)) [Num -> [Num -> Num]] (lambda (y) (lambda (x) (+ x y y))) [Num -> Num] ((lambda (y) (lambda (x) (+ x y y))) 2) Number (((lambda (y) (lambda (x) (+ x y y))) 2) 5)
6
Example: derive ;Signature: deriv(f dx) ;Type: [[Number -> Number]*Number -> [Number -> Number]] ;Example: for f(x)=x^3, the derivative is the function 3x^2, ;whose value at x=5 is 75. ;Tests: ((deriv cube 0.001) 5) ==> ~75 (define deriv (lambda (f dx) (lambda (x) (/ (- (f (+ x dx)) (f x)) dx))))
7
Example: derive (define dx 0.001) (define deriv (lambda (f) (lambda (x) (/ (- (f (+ x dx)) (f x)) dx)))) >deriv # >(deriv (lambda (x) (* x x x))) # >((deriv (lambda (x) (* x x x))) 5) 75.015
8
Compile Time vs. Runtime More a question of ‘is it a closure already? Or do we need to evaluate this lambda expression?’ When a closure depends on other closures, it is preferred that these auxiliary closures are created at compile time
9
Compile Time vs Runtime (define sqr (lambda (x) (* x x))) (sqr 5) ((lambda (x) (* x x)) 5) Compile time Runtime
10
Example: n th deriv (define nth-deriv (lambda (f n) (lambda (x) (if (= n 0) (f x) ((nth-deriv (deriv f) (- n 1)) x))))) (define dx 0.001) (define deriv (lambda (f) (lambda (x) (/ (- (f (+ x dx)) (f x)) dx)))) reminder
11
(define nth-deriv (lambda (f n) (lambda (x) (if (= n 0) (f x) ((nth-deriv (deriv f) (- n 1)) x))))) (define nth-deriv (lambda (f n) (if (= n 0) f (lambda (x) ((nth-deriv (deriv f) (- n 1)) x))))) (define nth-deriv (lambda (f n) (if (= n 0) f (nth-deriv (deriv f) (- n 1))))) (define nth-deriv (lambda (f n) (if (= n 0) f (deriv (nth-deriv f (- n 1)))))) >(define five-exp (lambda (x) (* x x x x x))) >(define fourth-deriv-of-five-exp (nth-deriv five-exp 4)) > fourth-deriv-of-five-exp #
12
Compile time vs Runtime We will always prefer compile-time, but sometimes its not possile (remember f_helper ?)
13
Delayed Computation With lambda we can delay the computation. We can abuse it to solve hard problems in an elegant way.
14
and and or special forms (and... ) (or... )
15
Example (if condition consequence alternative) ==> (or (and condition consequence) alternative)
16
Example > (define x 0) > (define y 6) > (or (and (zero? x) 100000) (/ y x)) 100000 But what about > (if (zero? x) #f #t) #f > (or (and (zero? x) #f) #t) #t
17
Example The fixed version: (if condition consequence alternative) ==> ((or (and condition (lambda () consequence)) (lambda () alternative)))
18
Delayed Computation for obtaining Iterative Process Reminder: recursion stores future computation New method for making iteration of recursion using high-order procedures
19
Recursive Factorial (define fact (lambda (n) (if (= n 0) 1 (* (fact (- n 1)) n))))
20
Iterative Factorial (define fact-iter (lambda (n prod) (if (= n 0) prod (fact-iter (- n 1) (* n prod)))))
21
Iterative Factorial with Delayed Computation (define fact$ (lambda (n cont) (if (= n 0) (cont 1) (fact$ (- n 1) (lambda (res) (cont (* n res)))))))
22
(fact$ 2 (lambda (x) x)) (fact$ 1 (lambda (res) ((lambda (x) x) (* 2 res)))) (fact$ 0 (lambda (res) ((lambda (res) ((lambda (x) x) (* 2 res))) (* 1 res)))) ((lambda (res) ((lambda (x) x) (* 2 res))) (* 1 res))) 1) ((lambda (res) ((lambda (x) x) (* 2 res))) 1) ((lambda (x) x) 2) 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.