Presentation is loading. Please wait.

Presentation is loading. Please wait.

DC MICROGRID MODELING AND ENERGY STORAGE PLACEMENT TO ENHANCE SYSTEM STABILITY Carl Westerby 5/1/2013 1.

Similar presentations


Presentation on theme: "DC MICROGRID MODELING AND ENERGY STORAGE PLACEMENT TO ENHANCE SYSTEM STABILITY Carl Westerby 5/1/2013 1."— Presentation transcript:

1 DC MICROGRID MODELING AND ENERGY STORAGE PLACEMENT TO ENHANCE SYSTEM STABILITY Carl Westerby 5/1/2013 1

2 Acknowledgments  Dr. Yu  Committee Members  Dr. Nasiri  Dr. Hosseini  Qiang Fu  Associates at Univ. Wisconsin – Madison  Dr. Han  Junjian Zhao 2

3 Table of Contents 1.Introduction 2.Load and Line Characterization 3.Dual Active Bridge (DAB) Converter Overview 4.Dynamic System Modeling 5.UWM System Modeling 6.System Analysis 7.System Simulation 8.Conclusion 9.References 3

4 1. Introduction Benefits of Microgrids Integrating distributed generation from renewables Modularized approach increases reliability Benefits of DC over AC No Reactive Power Enhanced System Efficiency No Frequency Synchronization with Grid Importance of Energy Storage with Distributed Generation Optimal placement to reduce cost Creating a System Model to Analyze 4

5 2. DC System Impedances Estimate Cable Lengths using Satellite images Calculate the cable resistance using the resistance/area of copper(10.371ohms/mil2/foot) The line inductance can be calculated using the mutual inductance formula. 5

6 2. DC System Load Calculation 6 DescriptionValueSourceReference Lighting Load3 VA/ft 2 NEC prescribed estimate3 Office Receptacle Load1 VA/ft 2 NEC prescribed estimate3 Heating and Cooling Load0.9 W/ft 2 HVAC Sizing Rule of Thumb (600 ton/ft 2 )4

7 3. Dual Active Bridge (DAB) Converter Overview Two Active H-bridges (Bi-directional) Designed Series Inductance High Frequency Transformer (Isolation) 7

8 3. DAB Converter Operation 8

9 3. DAB Average Model 9

10 4. DC Microgrid Modeling 10 Use previous methods to create a dynamic system model using differential equations: Line Impedances Load Resistances DAB Average Model Capacitors Current Sources

11 4. DC Microgrid Modeling KCL at Each Node Node 1:... 11 I L12 I L23

12 4. DC Microgrid Modeling KVL across L 12 :... 12 I L12 I L23

13 4. State Space Modeling  One state is needed for each independent energy storage device  Capacitor Voltages and Inductor Currents are a natural choice  Input is chosen to be the current sources 13

14 4. State Space Modeling Cont. Model for a simple 3 bus system: 14

15 5. UWM DC Microgrid 15

16 5. Voltage Selection Safety Issues System Efficiency Standards NEC Voltage limit (600 V) ETSI Standard for the 380 VDC voltage level (EN 300 132-3-1) 16

17 5. System Bus Parameters 17 BusBus Load (kW)R load (ohms)Generation (kW)# of ConvertersC (F) 1Line Parasitics10003000 150.015 21470.982147 70.007 31347.50.107650 330.033 412.2511.7880 10.001 5560.440.258250 130.013 66860.210420 210.021 7796.250.181230 120.012 82940.491100 50.005 91310.750.110510 260.026 101102.50.131540 270.027 11695.20.20834 20.002 12600.250.241160 80.008

18 5. System Line Parameters 18 LineDistance (feet)R (mΩ)L (μH) Bus 1-23000 5.18693.80 Bus 2-3500 0.86415.60 Bus 2-6500 0.86415.60 Bus 3-4625 1.08019.50 Bus 4-5300 0.5199.38 Bus 5-7600 1.03718.80 Bus 2-8300 0.5199.38 Bus 9-8600 1.03718.80 Bus 10-91100 1.90134.40 Bus 11-101600 2.76650.00 Bus 12-11600 1.03718.80

19 6. System Analysis 19 Part 1 Eigenvalue Analysis: Damping Speed Part 2 Input Matrix Analysis: Magnitude of effect on System Modes Number of Modes Affected

20 6. System Eigenvalues 20

21 6. System Eigenvalue Damping 21

22 6. System Eigenvalue Speed 22

23 6. Input Matrix analysis 23

24 6. Controllability Can the input reach all the states? Example Matrix: Magnitude of elements (ΔVoltage/Amp injected) Number of Modes effected 24

25 6. Proposed Indexing 1.Sum the magnitude of elements in each column 2.Count the number of non-zero elements in each column 3.Create a Multiplicative Factor Based on non-zero elements Factor=1+[(# non-0) –(minimum # non-0 in all column)] Example: 25 Bmu1u2u3 Eig 110.51.5 Eig 2111.5 Eig 300.50 Sum223 # non-0232 Min(# non-0)222 Factor calculation1+(2-2)1+(3-2)1+(2-2) Factor121 Index243

26 6. B m Indexing for UWM 26 Bus 1Bus 2Bus 3Bus 4Bus 5Bus 6Bus 7Bus 8Bus 9Bus 10Bus 11Bus 12 Eig 10.003.2545.144664.25252.040.007.010.500.00 Eig 20.003.2545.144664.25252.040.007.010.500.00 Eig 318.361329.5152.2621.004.3382.360.401422.0159.231.250.620.08 Eig 418.361329.5152.2621.004.3382.360.401422.0159.231.250.620.08 Eig 50.000.450.010.00 0.020.000.391.2343.232299.68441.78 Eig 60.000.450.010.00 0.020.000.391.2343.232299.68441.78 Eig 737.41896.18120.6717.3335.20186.8511.701212.44171.4411.503.141.90 Eig 837.41896.18120.6717.3335.20186.8511.701212.44171.4411.503.141.90 Eig 94.7062.00110.76541.18804.1427.23635.9852.5016.002.080.260.50 Eig 104.7062.00110.76541.18804.1427.23635.9852.5016.002.080.260.50 Eig 1177.6086.6786.7087.2687.5785.9988.3288.2091.1095.73103.62104.44 Eig 12575.1848.3178.53128.22154.6562.50182.8540.0131.6745.6462.1069.21 Eig 13575.1848.3178.53128.22154.6562.50182.8540.0131.6745.6462.1069.21 Eig 14188.83118.59228.91308.10345.20136.51384.1755.83175.88441.15599.83644.54 Eig 15188.83118.59228.91308.10345.20136.51384.1755.83175.88441.15599.83644.54 Eig 16250.15264.9383.57217.52359.39473.77523.92277.47288.21168.20468.92594.11 Eig 17250.15264.9383.57217.52359.39473.77523.92277.47288.21168.20468.92594.11 Eig 1870.27135.37127.1342.77123.13361.71225.1386.14325.96308.16589.90847.31 Eig 1970.27135.37127.1342.77123.13361.71225.1386.14325.96308.16589.90847.31 Eig 207.3625.62496.0686.69124.93502.86431.7245.9879.9883.1842.0280.26 Eig 217.3625.62496.0686.69124.93502.86431.7245.9879.9883.1842.0280.26 Eig 223.1211.71138.5227.5327.98100.37114.24164.65421.52371.74165.71335.04 Eig 233.1211.71138.5227.5327.98100.37114.24164.65421.52371.74165.71335.04 Sum 2388.365878.513049.8212196.444549.553954.355122.566804.043233.343047.998567.986133.9 # non-0's1923 21 2321 (x)155333353333 Index2388.3629392.5915249.3036589.3613648.6411863.0215367.6934020.229699.969144.1325703.9318401.70

27 6. Analysis Summary Bus Voltages at nodes: 1, 2, 3, 4, 7, 8, 9, 10 are all weakly damped (ordered weakest to strongest) Bus Voltages at nodes: 10, 9, 8, 7, 6, 3, 4 are the slowest (ordered slowest to fastest) Energy Storage placement at Bus 2, 4, 8 is recommended based on the input matrix analysis 27

28 7. System Simulation Model 28

29 7. Battery and PV Modeling 29

30 7. System Simulation Potential Disturbances: 1.Changes in Irradiance 2.5% Step Increase in Load 3.5% Step Decrease in Load 30

31 7. PV Irradiance Changes (No batteries) 31

32 7. PV Irradiance Changes (3MW at Bus 4 and Bus 8) 32

33 7. PV Voltage Change Summary 33 Bus 1Bus 2Bus 3Bus 4Bus 5Bus 6Bus 7Bus 8Bus 9Bus 10Bus 11Bus 12 Bus126.7226.8126.9225.8927.8226.8425.8426.83 19.0214.14 Bus 226.8117.5811.72 11.35 12.6912.8313.3411.5012.8212.3013.4413.71 Bus 326.9211.7220.0614.3815.9912.6617.0211.5811.5312.3113.8314.23 Bus 425.89 11.35 14.3823.1819.4512.5820.8111.3611.9712.1913.9214.51 Bus 527.8212.6915.9919.4527.5414.4524.9213.0412.2413.4816.5416.97 Bus 626.8412.8312.6612.5814.4521.6014.5316.3016.3513.2614.9115.34 Bus 725.8413.3417.0220.8124.9214.5333.5512.8014.3614.7117.9719.07 Bus 826.8311.5011.5811.3613.0416.3012.8018.8613.0013.8715.0715.34 Bus 926.8312.8211.5311.9712.2416.3514.3613.0021.8717.6718.7320.05 Bus 1026.8312.3012.3112.1913.4813.2614.7113.8717.6729.8027.9730.16 Bus 1119.0213.4413.8313.9216.5414.9117.9715.0718.7327.9743.5441.57 Bus 1214.1413.7114.2314.5116.9715.3419.0715.3420.0530.1641.5748.56 Average25.0414.1815.1815.9717.9315.9719.0814.9616.4518.7121.3821.97

34 7. 5% Step Load Increase (No batteries) 34

35 7. 5% Step Load Increase (3MW at Bus 4 and Bus 8) 35

36 7. 5% Load Increase Voltage Changes 36 Bus 1Bus 2Bus 3Bus 4Bus 5Bus 6Bus 7Bus 8Bus 9Bus 10Bus 11Bus 12 Bus111.6613.2413.3612.4615.5413.6211.3013.2013.2613.4210.5810.64 Bus 213.2411.689.86 8.82 10.419.999.79 8.91 10.1910.159.909.89 Bus 313.369.8612.079.2110.689.989.419.609.739.8012.099.83 Bus 412.46 8.82 9.2111.189.699.179.84 8.38 8.929.0411.168.96 Bus 515.5410.4110.689.6912.659.4711.358.898.879.6212.7110.50 Bus 613.629.999.989.179.4711.979.229.9110.1310.2312.0210.16 Bus 711.309.799.419.8411.359.2212.878.909.479.8512.8910.19 Bus 813.20 8.91 9.60 8.38 8.899.918.9011.7010.1610.5211.8510.01 Bus 913.2610.199.738.928.8710.139.4710.1612.2610.9412.2310.55 Bus 1013.4210.159.809.049.6210.239.8510.5210.9413.1213.1311.47 Bus 1110.589.9012.0911.1612.7112.0212.8911.8512.2313.1314.3214.06 Bus 1210.649.899.838.9610.5010.1610.1910.0110.5511.4714.06 Average12.6910.2310.479.7410.8610.4910.4210.1710.5610.9412.2510.86

37 7. 5% Step Load Decrease (No Batteries) 37

38 7. 5% Step Load Decrease (3MW at Bus 4 and Bus 8) 38

39 5% Load Decrease Voltage Changes 39 Bus 1Bus 2Bus 3Bus 4Bus 5Bus 6Bus 7Bus 8Bus 9Bus 10Bus 11Bus 12 Bus112.3513.8513.9112.6214.7013.9512.1313.8213.8813.9911.1611.15 Bus 213.8512.2210.20 9.08 9.1810.5310.3710.1810.4310.249.929.99 Bus 313.9110.2012.709.5910.2610.4710.879.9710.069.959.9210.07 Bus 412.62 9.08 9.5911.7910.139.5610.39 8.80 9.119.129.099.19 Bus 514.709.1810.2610.1313.259.6511.849.189.8610.0510.0910.20 Bus 613.9510.5310.479.569.6512.599.5910.5510.5910.5610.2910.35 Bus 712.1310.3710.8710.3911.849.5913.549.3810.0010.2810.4410.54 Bus 813.8210.189.97 8.80 9.1810.559.3812.2510.46 10.1110.21 Bus 913.8810.4310.069.119.8610.5910.0010.4612.8611.1010.7710.88 Bus 1013.9910.249.959.1210.0510.5610.2810.4611.1013.8111.9112.04 Bus 1111.169.92 9.0910.0910.2910.4410.1110.7711.9114.6213.33 Bus 1211.159.9910.079.1910.2010.3510.5410.2110.8812.0413.3314.88 Average13.1310.5210.669.8710.7010.7210.7810.4510.8311.1310.9711.07

40 Voltage Difference Plot 40 2,42,84,84,95,93,83,94,94,11 PV Change11.3511.511.3611.9712.2411.5811.5311.9713.92 5% Load ↑8.828.918.388.928.879.69.738.9212.71 5% Load ↓9.0810.188.89.119.869.9710.069.119.09 Average9.7510.209.5110.0010.3210.3810.4410.0011.91

41 Eigenvalues Plot (5% Load ↑↓) 41

42 8. Conclusions Microgrid stability is important for profitability Optimal energy storage placement reduces costs Practical Modeling Approach Model Analysis Eigenvalues (Damping and Natural Frequency) Input Matrix (B m ) Magnitude of Change Number of Modes Effected Simulation Confirmation of Analysis Changes in PV Irradiance Step Load Increase and Decrease 42

43 9. References 43 1.S. Anand, B. Fernandes, "Reduced Order Model and Stability Analysis of Low Voltage DC Microgrid," IEEE Transactions on Industrial Electronics, vol. 99. 2.H. Seneff, “Study of the Method of Geometric Mean Distances Used in Inductance Calculation,” M.S. thesis, University of Missouri, United States,1947. 3.NFPA 70, The National Electrical Code. 2008 Edition. Quincy, MA: National Fire Protection Agency, 2007. 4.A. Bhatia, “HVAC Refresher - Facilities Standard for the Building Services (Part 2).” Internet: http://www.pdhcenter.com/courses/m216/m216content.pdf, [2012].

44 9. References 44 5.J. Salasovich, G. Mosey, “Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin.” NREL, Internet: http://www.nrel.gov/docs/fy11osti/49846.pdf, [August 2011]. 6.Q. Hengsi, J. Kimball, "Generalized Average Modeling of Dual Active Bridge DC–DC Converter," IEEE Transactions on Power Electronics, vol. 27, no.4, pp. 2078-2084, April 2012. 7.H. Krishnamurthy, R. Ayyanar, "Building Block Converter Module for Universal (AC-DC, DC-AC, DC-DC) Fully Modular Power Conversion Architecture," IEEE Power Electronics Specialists Conference, 2007, pp. 17-21, June 2007.

45 9. References 45 8.A. Fukyui et. al, “HVDC Power Distribution Systems for Telecom sites and Data Centers” in 2010 International Power Electronics Conference, ISBN 978-1-4244-5393-1/10, p.p. 874-880. 9.S. Anand, B. Fernandes, “Optimal Voltage Level for DC Microgrids”, ISBN 978-1-4244-5226-2/10, pp. 3034-3039


Download ppt "DC MICROGRID MODELING AND ENERGY STORAGE PLACEMENT TO ENHANCE SYSTEM STABILITY Carl Westerby 5/1/2013 1."

Similar presentations


Ads by Google