Download presentation
Presentation is loading. Please wait.
Published byIsabella Hodge Modified over 8 years ago
1
Chapter 6 Cardiovascular System: Blood
2
What are the functions of blood? Transportation: oxygen, nutrients, wastes, carbon dioxide, and hormones Defense: against invasion by pathogens Regulatory functions: body temperature, water-salt balance, and body pH 6.1 Blood: An overview
3
What is the composition of blood? Remember: blood is a fluid connective tissue Formed elements: produced in red bone marrow –Red blood cells/erythrocytes (RBC) –White blood cells/leukocytes (WBC) –Platelets Plasma: –92% water and 8% salts and organic molecules –Plasma proteins are the most abundant molecules 6.1 Blood: An overview
4
3 major types of plasma proteins Albumins – most abundant and important for plasma’s osmotic pressure as well as transportation Globulins – also important in transportation Fibrinogen – important for the formation of blood clots 6.1 Blood: An overview
5
Where do the formed elements come from and what are they? 6.1 Blood: An overview
6
The structure of red blood cells is important to their function Lack a nucleus and have few organelles Biconcave shape increases surface area Contain about 280 million hemoglobin molecules that bind 3 molecules of O 2 each 6.2 Blood: Red blood cells and transport of oxygen
7
Production of red blood cells Produced in the red bone marrow Lifespan of about 120 days Erythropoietin (EPO) is excreted by kidney cells and moves to red marrow when oxygen levels are low Old cells are destroyed by the liver and spleen 6.2 Blood: Red blood cells and transport of oxygen
8
What is blood doping? Any method of increasing the number of RBC’s to increase athletic performance It allows more efficient delivery of oxygen and reducing fatigue EPO is injected into a person months prior to an athletic event Is thought to be able to cause death due to thickening of blood that leads to a heart attack 6.2 Blood: Red blood cells and transport of oxygen
9
What disorders involve RBCs? Anemia – a condition resulting from too few RBCs or hemoglobin that causes a run-down feeling Anemia- blood does not deliver oxygen adequately usually due to a low amount of hemoglobin. Causes of anemia: –Low iron or low folic acid –Hemorrhage –Aplastic anemia- red bone marrow cannot produce enough RBCs –Pernicious anemia-low amount of vitamin B12 or intrinsic factor Intrinsic factor is needed for absorption of B12 into the blood stream from the digestive system. B12 is needed for cell divisions that result in RBCs 6.2 Blood: Red blood cells and transport of oxygen
10
Blood Disorders Sickle-cell anemia – genetic disease that causes RBCs to be sickle shaped and tend to rupture Carbon Monoxide poisoning- Carbon monoxide binds to hemoglobin better than oxygen does, resulting in lower oxygen delivery to the tissues
11
White blood cells Derived from red bone marrow Large blood cells that have a nucleus Production is regulated by colony-stimulating factor (CSF) Can be found in the blood as well as in tissues Fight infection and an important part of the immune system Some live days and others live months or years 6.3 White blood cells and defense against disease
12
Movement of WBC’s out of circulation 6.3 White blood cells and defense against disease
13
How are white blood cells categorized? Granular – contain noticeable granules and lobed nuclei –Eosinophil –Basophil –Neutrophil Agranular – no granules; nonlobed nuclei –Lymphocyte –Monocyte 6.3 White blood cells and defense against disease
14
6.2 Composition of Blood Types of WBC: a. Neutrophils—most abundant and the first to respond to an infection (phagocytes) b. Eosinophils—increase in number during an allergic reaction or a parasitic worm infection c. Basophils—release histamines associated with allergic reactions (dilates blood vessels and constricts air ways) d. Monocytes—become larger macophages that phagocytize pathogens, old cells, and cellular debris e. Lymphocytes—B-cells protect us by producing antibodies, and T-cells destroy any cell that has foreign antigens 6-9
15
How do blood cell leave circulation? 6.3 White blood cells and defense against disease
16
What disorders involve WBC’s? Severe combined immunodeficiency disease (SCID) – an inherited disease in which stem cells of WBCs lack an enzyme that allows them to fight any infection Leukemia – groups of cancers that affect white blood cells in which cells proliferate without control Infectious mononucleosis – also known as the “kissing disease” occurs when the Epstein-Barr virus (EBV) infects lymphocytes resulting in fatigue, sore throat, and swollen lymph nodes 6.3 White blood cells and defense against disease
17
Terms to know Leukopenia-abnormally low WBC count Leukocytosis-abnormally high WBC count.
18
Platelets Made of fragments of large cells called megakaryocytes made in the red bone marrow About 200 billion are made per day Function in blood clotting Blood proteins named thrombin and fibrinogen are important for blood clotting by leading to fibrin threads that catch RBCs 6.4 Platelets and blood clotting
19
How do platelets clot blood? 6.4 Platelets and blood clotting
20
What disorders involve platelets? Thrombocytopenia – a disorder in which the number of platelets is too low due to not enough being made in the bone marrow or the increased breakdown outside the marrow Thromboembolism – when a clot forms and breaks off from its site of origin and plugs another vessel Hemophilia – a genetic disorder that results in a deficiency of a clotting factor so that when a person damages a blood vessel they are unable to properly clot their blood both internally and externally 6.4 Platelets and blood clotting
21
Health Focus: What do you need to know about donating blood? Donating blood is a safe and sterile procedure You will donate about a pint of blood You will replace the plasma in a few hours and the cells in a few weeks A few people may feel dizzy afterwards so sit down, eat a snack, and drink some water Your blood will at least be tested for syphilis, HIV antibodies, and hepatitis; if any of them come back positive, you will be notified Your blood can help save many lives You should not give blood if: –You have ever had hepatitis, malaria, or been treated for syphilis or gonorrhea within 12 months –If you risk for having HIV or have AIDS 6.4 Platelets and blood clotting
22
Terminology to help understand ABO blood typing? Antigen - a foreign substance, often a polysaccharide or a protein, that stimulates an immune response Antibody – proteins made in response to an antigen in the body and bind to that antigen Blood transfusion – transfer of blood from one individual into another individual 6.5 Blood typing and transfusions
23
What determines the A, B, AB or O blood type? Presence and/or absence of 2 blood antigens, A and B Type of antibodies present Antibodies are only present for those antigen lacking on the cells because these proteins recognize and bind the protein they are named after 6.5 Blood typing and transfusions
24
Blood Type AntigenAntibodyCan receive A B AB O
25
How can you remember what each blood type means? Blood types are named after the protein antigens that are present on the surface of their cell, except type O that entirely lacks A and B proteins Blood types only have antibodies to antigens they do not have on the surface of their cells For example: Type A blood –Have A proteins on its surface –Has B antibodies What can you say about someone with type AB blood? 6.5 Blood typing and transfusions
26
Looking at each blood type in the ABO blood system 6.5 Blood typing and transfusions
27
How can you determine if blood types are compatible for a blood transfusion? First, consider the antigens found on the blood transfusion recipient Second, consider the antibodies found in the donor blood If the antibodies in the donor blood can recognize the antigen on the recipient’s blood then the blood will agglutinate (clump) and cause rejection 6.5 Blood typing and transfusions
28
6.4 Blood Typing A B O Blood Groups—inherited. Type A blood—type A antigen on the surface of the RBC. Type B blood—type B antigen on the surface of the RBC. Type AB blood—type A and B antigens on the surface of the RBC. Type O blood—has no antigens on the surface of the RBC. Most common blood type? Rarest blood type? Universal donor blood type? Universal recipient blood type? The A B O system is used to determine the compatibility of donor’s and recipient’s blood. 6-14
29
Testing your understanding Can a person with blood type O accept blood type A without agglutination occurring? Why or why not? Why can people with AB blood type accept more blood types than people with type O, A or B? Which blood type is able to be used most often as a donor blood type? Why? 6.5 Blood typing and transfusions
30
What about Rh blood groups? The Rh factor is often included when expressing a blood type by naming it positive or negative People with the Rh factor are positive and those without it are negative Rh antibodies only develop in a person when they are exposed to the Rh factor from another’s blood (usually a fetus) 6.5 Blood typing and transfusions
31
When is the Rh factor important? Hemolytic disease of the newborn – a condition with incompatible blood types that leads to rupturing of blood cells in a baby before and continuing after birth During pregnancy under these conditions: –Mom: Rh - –Dad: Rh + –Fetus: Rh + (possible with the parents above) In this case above some Rh + blood can leak from the fetus to the mother during birth causing the mother to make Rh antibodies This can be a problem if the mother has a second fetus that is Rh + because she now has antibodies that can leak across the placenta and attack the fetus This condition is known as hemolytic disease of the newborn and can lead to retardation and even death 6.5 Blood typing and transfusions
32
Visualizing how hemolytic disease of the newborn happens? 6.5 Blood typing and transfusions
33
How can hemolytic disease of the newborn be prevented? Rh - women are given an injection of anti-Rh antibodies no later than 72 hours after birth to an Rh + baby These antibodies attack fetal red blood cells in the mother before the mother’s immune system can make antibodies This will have to be repeated if an Rh - mother has another Rh + baby in case she has later pregnancies 6.5 Blood typing and transfusions
34
Disorders Septicemia –Infection of blood caused by microbe or the toxins produced by certain bacteria –Can cause circulatory shut-down Thrombus- blood clot Embolism- blood clot that is not attached
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.