Presentation is loading. Please wait.

Presentation is loading. Please wait.

Contest and Pizza Party

Similar presentations


Presentation on theme: "Contest and Pizza Party"— Presentation transcript:

1 Contest and Pizza Party
June 11, 2013

2 Term Project on Surface Engineering (DM23757)
Objectives; Better understanding of process mechanism, operating method and experimental results Outline ; 상감기법 (Damascene Process) 을 응용한 창작품 제작 재료 제한 없음 (금속, 종이, 플라스틱, 세라믹, 나무 등) Evaluation ; 1. 창의성 기술성 응용성 2 6월 7일까지 메일로 제출 늦으면 감점 -3 Contest ; June 11 1인당 1개의 작품을 전시, 1페이지에 작품에 대한 설명 첨부 학점에 35% 반영함과 동시에 상금 (3명에 10만원씩)

3 Boom Boom Speaker 최혜림 표면에 광섬유를 상감기법으로 적용하여 음악에 맞춰 불빛이 반짝이는 스피커 - 음악의 세기에 따라 스피커에 인가되는 전력의 차이가 발생함을 이용해 LED의 광량을 조절 - 빛을 전반사 시켜 손실 없이 이동 시킬 수 있는 광섬유를 이용해 LED 빛을 스피커 표면에서 빛나게 함 1. 도안 준비 2. 도안 부착 3. 스피커 가공 4. LED 연결 5. 스피커 가공 완료 6. 광섬유 준비 7. 광섬유 부착 8. LED-광섬유 연결

4 Cleaning Solution & Cleaner
Lecture 7 Cleaning Solution & Cleaner

5 Contents What is Cleaning Importance of Cleaning
Classification of Cleaning Cleaning Solution Selecting the cleaning solution Development of Cleaning Summary Paper Review

6 1. What is Cleaning ? Definition Pre-Cleaning Post-Cleaning
To reduce the surface contamination to a minimum level during semiconductor manufacturing processes in order to achieve higher yield. Cleaning process for subsequent process. Ex) surface preparing, cleaning before CVD and furnace Pre-Cleaning To remove the contamination induced in previous process. Ex) post-CMP cleaning, Post PECVD Post-Cleaning Contamination Cleaning 정의 오염물 분류

7 1. What is Cleaning ? 전체 공정의 약 25%, 100개 이상의 공정에서 세정이 이루어짐
습식세정은 100도 이하의 온도에서 모든 물질을 용해 혹은 액중 분산시키고, 웨이퍼 표면에 손상을 주지 않는 등의 뛰어난 특징을 가지고도 그 중요성을 확보하고 있다. 요구사항 (1) 아주 청정한 표면을, (2) 부작용 없이, (3) 단시간 내에, (4) 높은 재현성을 가지고, (5) 낮은 원가로 실현. RCA 세정법을 기본으로 한 전통적인 반도체 습식 세정법 세정액 세정목적 부작용 H2SO4/H2O2 (SPM) 유기물, 금속 미립자 NH4OH/H2O2/H2O(APM) 미립자, 유기물 금속 HCl/H2O2/H2O(HPM) 금속(표면위) HF/H20(DHF) 산화막, 금속(산화막내부) 귀금속(Cu등), 미립자 RCA 세정의 문제점 (1) 세정 공정수가 많다. (2) 화학액 및 초순수의 사용량이 많다. (3) 장치가 매우 크다. (4) 오염 재부착으로 인해 고청정화가 곤란하다. (5) 부식으로 인해 금속재료가 노출해 있는 표면 세정에는 사용할 수 없다.

8 2. Importance of Cleaning
Cleaning process must be added after each process in semiconductor processes Decrease of device dimensions Reduction of electrical characteristics Yield 파티클은 형상에 영향을 주고, 웨이퍼위에 있을 경우 압력이 가해졌을때 크랙이 발생할 우려가 있음. 메탈은 좁아지는 선폭 중앙에 있을 경우 도선 간에 쇼트가 생김. 정보 교환시 혼란이 발생함. 반도체 공정의 약 1/3이 세정공정임을 생각할때 세정의 중요성은 계속 커지고 있음.

9 Cleaning Mechanism 기능 1 오염의 이탈 - 파티클 오염 (불용성/난용성의 경우) → 물리력
 - 파티클 오염 (불용성/난용성의 경우) → 물리력  - 금속오염 및 유기물 오염 → 용해 및 분해 기능 기능 2 오염의 재부착방지  - 파티클 오염 → 제타 전위제어, 젖음성 제어 등  - 금속 오염 → pH 산화환원전위 제어 / 킬레이트제 활용 기능 3 하부 막의 식각  - 막 표면과 강고하게 화학 결합해 있는 오염, 막 내부에    존재하는 오염

10 3. Classification of Cleaning
< Mechanical Type > Wet Dry Scrubber Megasonic Single-wafer spin Aerosol SCF Contact Noncontact < Chemical solution > APM (SC-1) HPM (SC-2) SPM DHF BOE Ozonated / water 각종 화학재료의 화학식 언급 할것. Spm은 황산과 과산화 수소수. 에이피엠 암모니아. 에이치피엠 염산. Metal Particle Metal Heavy organic Metal Oxide Film Metal Oxide Film Oxide Film Metal

11 < SC-1 ; APM> Lift off < SC-2 ; HPM> Dissolution
4. Cleaning Solution 4 -1 RCA < SC-1 ; APM> Lift off Au, Ag, Cu, Ni, Cd, Zn, Co, Cr Etching the particles Prevention of readhesion < SC-2 ; HPM> Dissolution Sc2는 sc1에서 발생하는 금속오염을 제거 하기 위해. 탱크에 담그는 세정. 오염문제. 두가지 공정이 함께 사용되어진다. HCl : H2O2 : DIW = 1:1:5 at 75~85℃ Heavy metal, Alkali ions, Metal hydroxides Hydrophilic after the cleaning

12 Zeta Potential - Repulsive Force - Attractive Force Stern Layer +
Net negative charge + Zeta potential Stern Layer Diffused Layer Repulsive Force Wafer - Attractive Force + Particle

13 < BOE > ; Buffered Oxide Echant
4-2. HF & BOE < HF > Oxide film Metal except noble metal as Cu, Au Impurity in oxide film < BOE > ; Buffered Oxide Echant H2o2를 첨가하면 FPM이라고 불린다. NH4F + HF Stable etch rate by buffer High chemical wettability with surfactant

14 4-3. O3 / HF(SCROD) Particle removal Metal removal DHF
Si + O3  SiO2 +O Ozonated water SiO2 + HF  H2O + SiF4 Oxide By oxide film removal Oxide removal Particles removal Particle removal Metal removal 메커니즘 상세히 설명할것.

15 5. Selecting the cleaning solution
Goal Particle Metal Noble metal Material of wafer Si Copper APM + Scrubber SCROD APM + Megasonic Scrubber + DHF or HPM Scrubber + HPM DHF Except

16 Reduction of process time Little light Chemistry
6. Development of Cleaning Eco-friendly 여기서 레이저 크러스터 설명한다. Reduction of process time < IMEC > Little light Chemistry

17 Brush force > Total interaction force
Scrubber Mechanism van der Waals Energy Electrostatic Energy ( Zeta Potential) Total = + Interaction ( ( Hamaker Hamaker constant constant Energy +Particle +Particle size ) s size ) - Attractive - Repulsive/Attractive Noncontact : Hydrodynamic drag force Contact : Rotation torque of brush Pva에 대한 사진과 설명 Brush force > Total interaction force  Remove !

18 ∴ Physical Force > Total Energy Added chemical solution
Brush Noncontact Partial Contact Full Contact Removal force Adhesion force Removal force with DIW Removal force with SC-1 N Brush rpm ∴ Physical Force > Total Energy Force Scratch Defects Added chemical solution Surfactant 브러쉬 컨텍 메카니즘, 2차 오염 메커니즘. 3가지 타입 설명. 버스니아 교수는 디아이워터와 풀컨텍 브러쉬 만으로 파티클이 제거되며 넌컨택에 화학액을 첨가한 경우에도 높은 알피엠에서는 제거가 가능함을 보였다. 입자가 큰 파티클 일수록 제거가 용이하다. 브러시의 간극이 좁을 수록. < 0.1㎛, Noncontact >

19 < with surfactant >
Brush + Brush out < Readhesion > Physical force Zeta potential < with surfactant > Brush - Brush out Physical force 브러쉬의 재오염 문제 개념도 및 계면활성제의 필요성

20

21 Particle Deposition Mechanism
1. Physisorption(Van Der Waals Forces) : E= - AR / 6D 2. Electrostatic Attraction Surface charge : Zeta-Potential E 3. Chemisorption : Chemical reaction between particles and surfaces 4. Capillary Condensation : Fc = 4πRγL

22 3 - 2. Megasonic Cavitation Acoustic streaming Radiation force
Megasonic energy( kHz) 메가소닉만으로 해결되는 것이아니라 sc-1용액이나 암모니아 용액에서 사용되어져야 효과적이다.

23 < Application of Megasonic >

24 3 - 3. Single wafer spin < Single wafer spin >
< SEZ Spin Etcher > 단계별 드레인으로 오염의 최소화 가능, 작은 공간 설치 가능, 공정 단계의 간소화로 Lower chemical and water High efficiency and short process time Lower scratch by particles With O3 / DHF / N2

25 N2 Gas is more light than CO2, Ar
Cryogenic Aerosol-based Cleaning Technology Physical force of Aerosol No surface tension Conventional gas : CO2, Ar  Damage of pattern in semiconductor N2 Gas is more light than CO2, Ar 에어로솔로 이산화탄소, 아르곤 사용 페턴에 영향, 동일한 효과를 가지는 질소사용.

26 3 - 5. SCF (Super Critical Fluid) cleaning
Damage of pattern in Wet cleaning by surface tension Environment problem Dry process SCF Cleaning CO2 (31℃, 7.3MPa) Super critical fluid :Surface tension is zero 임계유체. 에어로솔과 함께 친 환경적인 크리닝. 레이져 세정기술

27 3-6. 기능수 세정 전해 환원수와 수소용해수의 세정능력 비교 전해 환원수에 의한 CMP후 세정효과

28 7. Summary Cleaning solution is selected by slurry, wafer and kind of removed material. Cleaning station must be composed of machine and chemical solution. Reduction of damage by surface tension. Goal of cleaning solution is little light chemistry in the future. Recently, many researches are progressing Cu CMP cleaning As development of new materials and size reduction of device, cleaning solution and cleaner will be important.

29 A Study on Particle Removal of PVA Brush
Paper review A Study on Particle Removal of PVA Brush Cleaning based on Contact Mode

30 2006 ITRS Road Map 2006 2008 2010 2012 Maximum Substrates Diameter (mm) 300 450 DRAM 1/2 Pitch (nm) 70 57 45 36 Particle size (nm) at front > 90 > 65 > 45 Particle (ea/㎠) at front > 0.17 Particle (ea/wafer) at front < 116 < 120 < 115 < 265 Particle size (nm) at back > 160 > 140 Particle (ea/wafer) at back < 400 < 200 Cleaning process occupies more than 35% of semiconductor fabrication. As pattern size decrease, effect of defect is becoming large. Cleaning process performance affect directly device yield and cost. Eco-friendly process Production rate = 4 times 다음 표는 ITRS,…

31 Post-Cu CMP Cleaning CMP Process Post-Cu CMP Cleaning
Metal Trench Electroplating Cu Via Substrate Damascene Patterning Metal Dep. & Anneal CMP Process Post-Cu CMP Cleaning

32 Conventional Chemical Cleaning
RCA cleaning process (SC-1, SC-2) Wet Station Chemical Component Chemical Ratio Time Target Contamination SC-1 NH4OH:H2O2:H2O (50~90 ℃) 1:1:5~0.05:1:5 10 min~ Particle, Organic and Metal SC-2 HCl: H2O2:H2O (80~90 ℃) 1:1:6~1:2:8 Noble Metal, Alkaline ions Disadvantage Yearly chemical use / wet station 19,235 Gallon Waste huge chemistry and DIW Environment Problem Cross contamination Chemical attack (corrosion, etching) Non-uniform cleaning performance Yearly DI water use / wet station 64,821,120 Gallon 따라서 물리적 세정의 중요성이 커지고 있다라고 마무리 Yearly chemical cost / wet station $ 1,136,300 Based on 8” wafer, 96 run/day Data from Semiconductor International 2000

33 Brush Cleaning Advantage Disadvantage Does not make dusts
Typical physical properties of the PVA brush Porosity (%) 85-95 Average pore size (㎛) Apparent density (g/㎤) 30 % compressive stress (g/㎠) 10-110 Tensile strength (kg/㎠) 2-6 Tensile elongation (%) Water absorption (wt%) Maximum allowable temperature (℃) 80 dry, 60 wet Decomposition point (℃) 170 Advantage Disadvantage Does not make dusts Good chemical stability Strong cleaning force Double side cleaning Pattern damage due to contact process Contamination stuck Inducing scratch 브러시공정이 가지는 단점을 보완하기 위하여 본 연구가 진행되었다 라고 마무리

34 Background The boundary of partial and ideal contact is vague.
J. Taylor, “Yield Enhancement through Understanding the Particle Adhesion and Removal Mechanisms in CMP and Post CMP Cleaning processes”, IEEE Advanced Semiconductor Manufacturing Conference, pp , 2000 A. A. Busnaina, “Particle Adhesion and Removal Mechanisms in Post-CMP Cleaning Processes”, IEEE Transaction on Semiconductor Manufacturing, Vol. 15, No. 4, pp , 2002 The boundary of partial and ideal contact is vague. Difficult realization of partial and ideal contact. While brush cleaning has been widely used, little theoretical work has been done in the fields. 연구에 앞서 사전 문헌조사를 실시하였습니다.

35 Non-contact condition Full contact condition
Monitoring System Monitoring Sys’ Contact condition Non-contact condition Velocity Gap between brush and wafer Particle removal efficiency Full contact condition Friction force Re-adhesion of particle Monitoring Sys’ Scratch Defectivity AFM lithography

36 Objective

37 Particle Adhesion on Different Surface
Cu After CMP Process PETEOS 180 nm PETEOS Cu - - - Repulsive force Attractive force - - - Cu PETEOS Many particles remain selectively on Cu surface, rather than on PETEOS. We focus on the particle removal from the Cu surface after Cu CMP process.

38 Experimental Setup: GnP Cleaner system
GnP Cleaner812L Applicable Wafer Size : 8inch and 12 inch Configuration : Stand alone with 4 cleaning stations - 1 Pre Cleaning with DIW Spray  - 2 Double-side Roll Brush Cleaning - 1 Spin Rinse Dry with N2 Blow Size - 1700W 960D 1300H - Brush size : Ø70(OD) Ø32(ID) Ø320(L) Ø38(OD) Ø22(ID) Ø310(L) Chemical : NH4OH ~1wt% available Brush type : PVA brush, Both side of wafer cleaning Brush rotation speed : Max 300rpm Spin speed : Max 2500rpm DI rinse / N2 blow Control Module - PC Monitor Interface - Programmable Sequence - Sequence Control: PC Pre-cleaning Brush scrubbing Spin rinse dry Megasonic

39 Definition of Terms Brush Module
1. Contact force: Contact force is defined as a force to pressurize a wafer. Brushes 2. Friction force : Friction force is defined as a force generated between brushes and wafer wafer Brushes 3. Brush overlap: Brush overlap is the amount of overlap between wafer and brush. Brush Brush Module

40 Data Acquisition Program- CleanEYE
Contact force Friction force Contact force Friction force Contact force Friction force

41 Brush scrubbing time (s)
Experimental Condition Parameter Conditions Wafer 4 inch blanket wafer (CVD Cu deposition 1㎛) 8 inch PETEOS for re-adhesion test Slurry TST-D2 (Techno Semichem Co.), Mean diameter of abrasive : 60nm pH : 10 Cleaning solution Citric acid (0.5 wt%), BTA (0.03 wt%) NH4OH (1 wt%) Pre-cleaning time (s) 10 Brush scrubbing time (s) 60 Spin dry speed (rpm) 3000 Spin dry time (s) Brush velocity (rpm) 240 Brush gap (㎛) Under 10 문헌연구

42 Non-Contact Condition
Ref : Busnaina et al, “Particle adhesion and removal mechanisms in post-CMP cleaning process”, 2002

43 Results of Non-Contact Condition: Brush Velocity
60 rpm 120 rpm 240 rpm

44 Results of Non-Contact Condition: Brush Gap

45 Theoretical Mechanism of Full Contact Condition
Johnson-Kendall-Roberts (JKR) equation. P : Load R : Radius a : Contact area W : Interaction Force FA : Adhesion force between two material r : Contact Radius W : Thermodynamic work of adhesion Ref : Fan Zhang et al, Journal of Electrochemical Society,1999 화학세정공정의 단점 추세 물리적 세정공정의 이점 추세 Contact Area Small Middle Large Adhesion Force Small Middle Large

46 Monitoring System for Friction Force
Friction Force Monitoring Sys Charge Amp. F2 A/D conv. F1 PC

47 Results of Full Contact Condition: Friction Force
0.117kgf 0.195kgf Scratch length 0.406kgf 0.601kgf

48 Scratch Test on Cu surface: Experiment
XE-100 AFM lithography mode Probe  single crystal silicon 1000 nN ~ 6000 nN Properties of PPP-NCHPt non-contact probe Typical Value Specified Values Thickness (㎛) 4 Mean width (㎛) 30 Length (㎛) 125 Force constant (N/m) 42 10-130 Resonance frequency (kHz) 330 Guaranteed tip radius of curvature (nm) < 10 PPP-NCHPt non-contact probe

49 Scratch Test on Cu surface: Results
4000 nN 5000 nN 6000 nN

50 Scratch Test on Cu surface: before and after
5000 nN B B 6000 nN A B A B

51 Conclusion 문헌연구 10-10 ~10-11 N 10-6 ~10-7 N

52 Conclusion Contact condition was classified into two broad categories (non-contact and full contact) using monitoring system. In non-contact condition, removal efficiency was dominated by velocity and gap between brush and wafer, which matched well theoretical mechanism. High friction force have strong removal force, but it is poor to defectivity. Through AFM scratch test, force that induced scratch could be estimated. Full contact condition had re-adhesion problem by contaminating brush. 문헌연구


Download ppt "Contest and Pizza Party"

Similar presentations


Ads by Google