Presentation is loading. Please wait.

Presentation is loading. Please wait.

CMOS Analog 집적회로 설계 전북대학교 방 준 호.

Similar presentations


Presentation on theme: "CMOS Analog 집적회로 설계 전북대학교 방 준 호."— Presentation transcript:

1 CMOS Analog 집적회로 설계 전북대학교 방 준 호

2 1. 기본 증폭 회로 해석

3 (1) The real world is analog !
1.Analog IC 및 MOS Technology Trends 1 1. Analog IC 및 MOS Technology Trends (1) The real world is analog ! Hearing Speaking Data Processing blocks Analog circuits

4 MOS Technology Trends

5 MOS Technology Trends

6 Analog IC designs will never go away because
MOS Technology Trends 2 Analog IC designs will never go away because as end (natural) signal are analog, analog front ends are essential (amplifier, filters, ADCs and DACs) radio transmission and reception is an analog task analog is faster than digital for some applications as speeds go up, digital signals must be treated as analog SOC (system on chip) trends to make the analog designs more important than ever.

7 MOS Technology Trends Lilienfeld U.S. patents
1930: “Method and apparatus for controlling electric currents”, 1933: “Device for controlling electric current”

8 1940: Ohl develops the PN Junction
MOS Technology Trends 1940: Ohl develops the PN Junction 1947: Bardeen and Brattain create point contact transistor 1951: Shockley develops a junction transistor manufacturable in quantity When Noyes came to MIT, much to his surprise, few people had even heard about the transistor Point contact transistor Shockley develops a junction transistor

9 Jack Kilby integrated circuit
MOS Technology Trends 1959: Jack Kilby, working at TI, dreams up the idea of a monolithic “integrated circuit” Components connected by hand-soldered wires and isolated by “shaping”, PN-diodes used as resistors 1961: TI and Fairchild introduce the first logic ICs 1962: RCA develops the first MOS transistor RCA 16-transistor MOSFET IC Fairchild bipolar RTL Flip-Flop Jack Kilby integrated circuit

10 Fairchild micromosaic IC
MOS Technology Trends 1967: Fairchild develops the “Micromosaic” IC using CAD 1970: Fairchild introduces 256-bit Static RAMs 1970: Intel starts selling1K-bit Dynamic RAMs Intel K-bit DRAM Fairchild micromosaic IC Fairchild bit SRAM

11 Number of Transistors 80x86 Processors
MOS Technology Trends 1971: Intel introduces the Microprocessor Moore’s Law Number of Transistors 80x86 Processors 4004 8086 80286 80386 80486 P5 (Pentium) P6 (Pentium Pro) Pentium II Merced Doubling every 1.9 year 2.75 year

12 Supply Voltage: Vdd Cut-off frequency 2012 today today
MOS Technology Trends Supply Voltage: Vdd today 2012 Cut-off frequency today VDD is a measure for the low-voltage low- power consumptions ft is a measure for the speed of (analog) circuits

13 Interconnect: > 6 metal layers
MOS Technology Trends Interconnect: > 6 metal layers 30 nm Devices [Intel] mass production in 2009 Transistor gate length 70 nm Metal-1 width 180 nm 30 nm physical gate length 0.8 nm conventional SiO2(N)

14 MOS Technology Trends Manufacture of VLSI

15 Wafer Fabrication Process
MOS Technology Trends Wafer Fabrication Process

16 ADSL Analog Front-end Filter 설계 과정 예
MOS Technology Trends 3 ADSL Analog Front-end Filter 설계 과정 예 1. 시스템 Spec.검토 ANSI의 표준화 규격 (T :DMT방식) Analog Front-end 회 로 구 조 및 특 성 수신 단 (Rx) Transconductor 3.3V, -1.2 ~ +1.2 Input linearity Low-pass Filter 3rd-Elliptic, 1.1MHz, Gm-C High-pass Filter 3rd-Butterworth, 138kHz, Gm-C Σ-Δ ADC (Modulator) 12bit, 1MHz(50MHz), Cascade 2-2 AGC1(AGC2) 0㏈-31㏈, 5bit DAC control ADC Amplifier 80dB, 315MHz, Folded Cacode(CMFB) ADC Comparator 50㎒) 송신 단 (Tx) Line-driver(LD) 98 dB, 15MHz, Fully-Differential Pre-driver(PD) -15㏈-0㏈, 4bit DAC control, 3rd-Elliptic, 138kHz, Gm-C Σ-Δ DAC (Demodulator) 12 bit at 1MHz/s, 50Msampling, 4th SSSB DAC Interpolator Filter 141tap, 24bit DC Bias Circuit 온도변화에 적응하는 전압 및 전류원 Non-overlaping Clock Generator 3.3ns Non-overlaping time, 1.6ns delay 부가 회로 CMOS Switching Circuit ON resistance 370[Ω]

17 2. 설계 사양에 따른 설계 방법과 구조결정 4 (1) 설계 사양 (2) 함수 결정 (3) 능동필터 모의 방법 결정
MOS Technology Trends 4 2. 설계 사양에 따른 설계 방법과 구조결정 (1) 설계 사양 <Tx의 저역 필터 (LPF : 138 ㎑) 설계> <Rx의 저역 필터 (LPF : 1.1 ㎑) 설계> (2) 함수 결정 설계 사양을 만족하기 위한 필터함수 결정 i V V o <3차 타원 저역필터> <3차 바터워스 저역필터> (3) 능동필터 모의 방법 결정 Gyrator 직접모의법 Biquad 실현법 SFG (signal flow graph) 모의법  필터의 감도 특성이 우수한 장점 Iksan National College

18 MOS Technology Trends 5 3. 회로 설계 (1) Passive Filter (2) Active Filter

19 MOS Technology Trends 6 4. 시뮬레이션 (HSPICE)

20 MOS Technology Trends 7 5. Layout 및 Chip제작 (1) Layout (2) Fabrication

21

22

23 6. Chip Test 8 (1) Pin block (2) Test MOS Technology Trends Tx AGC
LF 138kHz 4-order DAC -15~0dB Rx LF 1.1MHz 0~30dB Sigma-Delta ADC MUX Selector External Input Internal Signal ex_clk vc vcm vrefp vrefn up un Gain Control Tx_G1 Tx_G2 Rx_G2 Rx_G1 Tx_out+ Tx_out- Rx_in+ Rx_in- Tx_Agcin+ Tx_Agcin- Tx_Ftout+ Tx_Ftout- Tx_Ftin+ Tx_Ftin- Rx_Ftout+ Rx_Ftout- Rx_Agcin+ Rx_Agcin- Rx_Agcout+ Rx_Agcout- Vb VDD_DAC VSS_DAC VDD_ADC VSS_ADC VDD_Tx VSS_Tx VDD_Rx VSS_Rx (1) Pin block (2) Test

24 n Overview of CMOS Fabrication SiO2 V out V DD GND V in n,100 Si
MOS Technology Trends Overview of CMOS Fabrication V out V in V DD GND n,100 Si Substrate n SiO2 (a) Oxidation

25 (C) Boron p-well diffusion, Deep drive-in
MOS Technology Trends n PR SiO2 n SiO2 p (b) Pattern, etch p-well (C) Boron p-well diffusion, Deep drive-in SiO2 p n (d) p-channel source & drain pattern SiO2 p n P+ (e) Boron p+ diffusion

26 (f) n-channel source & drain pattern
MOS Technology Trends SiO2 p n P+ (f) n-channel source & drain pattern SiO2 p n P+ n+ (g) Phosphorus n+ diffusion SiO2 p n P+ p-channel n+ n-channel (h) Gate oxide pattern

27 (j) Open contact windows
MOS Technology Trends SiO2 p n P+ n+ (i) Gate oxide growth SiO2 p n P+ n+ (j) Open contact windows SiO2 p n P+ n+ (k) Metalize and pattern

28 2. MOS Transistor의 기초 (1) MOS Transistor의 물리적 구조 9
nMOS pMOS Poly-Si Poly-Si SiO2 SiO2 n+ n+ p+ p+ n-well P-sub p-sub L L n+ W p+ W gate(G) gate(G) source(S) drain(D) drain(D) source(S) bulk(B) bulk(B)

29 (2) MOS Transistor의 Basic Operations (nMOS)
10 (2) MOS Transistor의 Basic Operations (nMOS) Cutoff n+ P-sub +++++ S G D B Linear(triode) n+ P-sub S G D B channel depletion region Saturation G S D n+ n+ P-sub B VGS < VTH VGS > VTH VGS > VTH VGD < VTH VGD > VTH VGD < VTH VDS < VGS- VTH. VDS > VGS- VTH. IDS = b [(VGS-VTH) VDS VDS2 ] 1 2 IDS = 0 b 2 IDS = (VGS- VTH)2 b = m Cox = m W L eo eox t ox

30 (3) Body Effect 11 2. MOS Transistor의 기초 G G S D S D n+ n+ n+ n+
depletion region IVBS1I < IVBS2I P-sub P-sub B B VTH = VTH0 + g ( IFsI - VBS - IFsI ) VTH0 = VTH ( when VBS = 0 ) g : body effect parameter = 2 esi qNA / Cox

31 (4) Channel-Length Modulation Effect
2. MOS Transistor의 기초 12 (4) Channel-Length Modulation Effect IVDS1I < IVDS2I G G S D S D n+ n+ n+ xd n+ depletion region P-sub P-sub B B 1 2 W Leff 1 2 W L-xd IDS = mnCox (VGS- VTH)2 = mnCox (VGS- VTH)2 1 2 W L = mnCox (VGS- VTH)2 (1 + lVDS) l : channel-length modulation parameter 1 L xd VDS l =

32 (5) MOSFET I-V Curves 13 IDS - VDS IDS - VGS 2. MOS Transistor의 기초 IDS
linear saturation linear saturation l = 0 l = 0 VGS VDS VDS IDS - VDS (IDS)1/2 cutoff on(saturation) (IDS)1/2 IVBSI VGS VGS VTH VTH0 VTH(VBS) IDS - VGS

33 (6) MOSFET Drain-source Current Summary
2. MOS Transistor의 기초 14 (6) MOSFET Drain-source Current Summary nMOSFET (VTHn > 0) D Cutoff IDS = 0 IDS = bn [ (VGS-VTHn)VDS VDS2 ] 1 2 IDS G B Linear bn 2 Saturation IDS = (VGS- VTHn)2 (1 + ln VDS) S pMOSFET (VTHp < 0) S Cutoff ISD = 0 ISD = bp [ (VSG-VTHp)VSD VSD2 ] 1 2 IDS Linear G B bp 2 Saturation ISD = (VSG- VTHp)2 (1 + lp VSD) D

34 15 실습 문제 2-1 : Bias point 계산 2. MOS Transistor의 기초 VDD=+5V
VTH0 = 0.8 V VTH = VTH0 + g ( IFsI - VBS - IFsI ) g = V RB =10kW = V Ifs I = 0.7 V VR VBS = - 3 V M1 mnCox = mA/V2 b1 = mnCox(W/L) = 533 mA/V2 W/L = 20mm /2.0mm VSS=-2V VBB=-5V M1 in saturation IRB = IM1 VDD-VR 1 2 1 2 = b1 (VGS1- VTH1)2 = b1 (VR- VSS - VTH1)2 RB VR = V or V IRB = IM1 = mA

35 실습 문제 2-2 : Bias Level Shifter의 Bias point 계산
2. MOS Transistor의 기초 16 실습 문제 2-2 : Bias Level Shifter의 Bias point 계산 VDD=+5V VTH0 = 0.8 V VINQ=? M2 R1=30kW g = V Ifs I = 0.7 V mnCox = 20 mA/V2 VOUTQ (W/L)1 = 30mm /2.0mm M1 (W/L)2 = 20mm /2.0mm R2=20kW VDD= 0V Bias Level Shifter회로의 출력전압 (VOUTQ)을 2.5V 로 얻어내기 위하여 VINQ에 몇 V를 인가하여야 하는가 ? (단. 모든 MOS는 Saturation에서 동작하며 Channel length 효과는 무시함.)

36 VOUT = f (VIN) : Nonlinear function (비선형 함수)
3.Small-Signal Analysis 17 3. Small-Signal Analysis (1) Nonlinear operations VIN f() VOUT = f (VIN) : Nonlinear function (비선형 함수) VOUT VOUT transfer curve Nonlinear transfer curve 계산이 복잡 VIN t Linear 모델 필요 VIN t

37 (2) Linearization of Nonlinear operations
3.Small-Signal Analysis 18 (2) Linearization of Nonlinear operations VIN = VINQ Vin VOUT = VOUTQ + Vout f() VOUT transfer curve VOUT = VOUTQ + Vout AV * Vin = Vout VOUTQ + AVi * Vin AV = dVout/dVin IQ VOUTQ 그래프의 기울기 = 전압의 증폭도 VIN=VINQ+ Vin t VIN VINQ Vin VINQ t t t Vin bias (Q) small-signal 입력과 출력 신호들은 두개의 성분, bias(Q)와 small-signal 신호를 가진다. small-signal model linear operations, small-signal parameters depend on bias point

38 = back-gate transconductance
3.Small-Signal Analysis 19 (3) MOSFET의 Small-signal model (Low-frequency) IDS = IDSQ + DIDS = IDS (VGS, VDS, VBS ,) VGS = VGSQ + DVGS VDS = VDSQ + DVDS VBS = VBSQ + DVBS IDS VGS Q DVGS IDS VDS Q DVDS IDS VBS Q DVBS IDS = + + gm IDS = DVGS go DVDS gmb + + DVBS gm = transconductance gm IDS = = b (VGSQ- VTH) (1 + l VDSQ) = 2b IDSQ (1 + l VDSQ) = 2b IDSQ VGS Q go = output conductance gO IDS 1 2 l IDSQ 1 + l IDSQ 1 ro = = b (VGSQ- VTH)2 l = = l IDSQ = VDS Q gmb = back-gate transconductance gmb IDS IDS VTH = = = gm g = hgm VBS Q VTH VBS Q IFI-VBSQ gm >> gmb >> go

39 (4) Small-signal 등가회로 (1)
3.Small-Signal Analysis 20 (4) Small-signal 등가회로 (1) VDD RL vO = VO + vo M VGS io vi = vgs vI vI = VGS + vgs vO = VO + vo (1) 소신호 성분 무시 할 때 1 2 W L IO = mnCox (VGS - VTH)2 ( if, l = 0 ) VDD - VO RL IO = 1 2 W L VO = VDD - mnCox (VGS - VTH)2 RL (2) 소신호 성분 포함 할 때 1 2 W L iO = mnCox (VGS + vgs - VTH)2 ( if, l = 0 ) VDD - (VO + vo) RL iO = vgs W L 2 vo = - RL mnCox { (VGS - VTH) vgs } 2 vgs 2 에 의한 왜곡율 10% 이내 조건

40 (4) Small-signal 등가회로 (2)
3.Small-Signal Analysis 21 (4) Small-signal 등가회로 (2) IvgsI < 0.2 (VGS - VTH) 조건을 만족한다면 W L vo = - RL mnCox { (VGS - VTH) vgs } vo = - RL io 이므로 io = mnCox (VGS - VTH) vgs W L VDD RL vo M io vi gm Body effect 무시한 등가회로 RL vin vgs + - G gmvgs D B S vout ro G D B S is rs VB 전압 = 0 일때 RL vin vgs + - G gmvgs gmbvbs D B S vout ro=1/go ro T형 등가회로

41 Direct(Nonlinear) Method Small-Signal (Linear) Analysis
3.Small-Signal Analysis 22 (5) Small-signal model 활용 예제 VDD=+5V RL =100kW VTH0 = 0.8 V g = 0.41V VTH = VTH0 + g ( IFsI - VBS - IFsI ) Ifs I = 0.7 V VBS = 0 V = 0.8 V VOUT VIN mnCox = 53.3 mA/V2 l = V-1 b1 = mnCox(W/L) = 533 mA/V2 M1 W/L = 20mm /2.0mm VSS=-5V Input Signal VIN = sin(wt) bias VINQ + small signal VIN Direct(Nonlinear) Method VDD-VOUT b1 2 b1 2 = (VGS1-VTH1)2 (1+l VDS) = (VIN-VSS-VTH1)2 [1+l(Vout-VSS)] RL (VIN-VSS -VTH1)2 (1+l VSS) - VDD/RL b1/2 19.99[0.01sin(wt) + 0.2]2 -5 VOUT = = = ? b1/2 (VIN-VSS -VTH1)2 l + 1/RL 1.33[0.01sin(wt) + 0.2]2 +1 Small-Signal (Linear) Analysis b1 2 Bias IQ= (VGSQ-VTH1)2 = 10.7mA VOUTQ= VDD-IQRL= 3.93V gm go = 2b1 IQ = 106.8mA = l IQ = 0.54mA RL vout G D vin by KCL gm1vgs1+ gmb1vbs+ go1vout + vout/RL 0 = gm1vgs1+ go1vout + vout/RL = + vgs1 ro1=1/go1 vout gm1 gm1vgs1 gmb1vbs1 AV = = - = vout = AV . vin = sin(wt) - vin go1+1/RL S B VOUT = VOUTQ + vout = sin(wt)

42 CS(Common-Source Amp.)
4. Basic MOS Amplifiers & Small-Signal Analysis 23 4. Basic MOS Amplifiers & Small-Signal Analysis (1) Basic MOS Amplifiers CS(Common-Source Amp.) CG(Common-Gate Amp.) CD(Common-Drain Amp.) VDD RL vout vin VSS D G S VDD RL vout VGG VSS D G S vin VDD RL vout VBB D G S vin VSS Input gate - source source - gate gate - drain Output drain - source drain - gate source - drain

43 (2-1) 저항부하를 갖는 CS Amplifier
4. Basic MOS Amplifiers & Small-Signal Analysis 24 (2) CS Amplifiers의 Small-Signal Analysis (2-1) 저항부하를 갖는 CS Amplifier VDD RL vout vin VSS D G S RL vout G D vin + vgs gmvgs gmbvbs ro=1/go - S B vout 전압 이득 (Voltage Gain) : AV = vin By vout - node gmvgs+ gmbvbs+ govout + vout/RL 0 = gmvgs+ govout + vout/RL = vout gm gm AV = = - = - = - gm (ro II RL) - gmro = vin go+1/RL 1/ro +1/RL 2m Cox W/L ID l - gmro = -

44 (2-2) Ideal DC 전류원 부하를 갖는 CS Amplifier
4. Basic MOS Amplifiers & Small-Signal Analysis 25 (2-2) Ideal DC 전류원 부하를 갖는 CS Amplifier VDD M vout vin ID vout G D vin + vgs gmvgs gmbvbs ro=1/go - S B vout 전압 이득 (Voltage Gain) : AV = vin By vout - node gmvgs+ gmbvbs+ govout 0 = gmvgs+ govout = vout gm gm 2m Cox W/L ID l AV = = - = - - gm ro = = - vin go 1/ro l 는 L 에 반비례 하므로 WL ID AV 전압이득이 Bias 전류 ID에 영향 받음

45 (2-3) MOS 다이오드를 부하로 사용하는 CS Amplifier
4. Basic MOS Amplifiers & Small-Signal Analysis 26 (2-3) MOS 다이오드를 부하로 사용하는 CS Amplifier VDD M1 vout vin M2 io ro2=1/go2 gm2vgs2 gmb2vbs2 vout + vi ro1 gm1vi - 전압 이득 (Voltage Gain) : vout gm1 ~ AV = = - vin gm2 + gmb2 + 1/ro1 + 1/ro2 gm1 (W/L)1 ~ AV = - = - gm2 전압이득이 Bias 전류 ID와 무관하고 W/L에 의해 결정됨 (W/L)2 Load impedance 낮음  RC 시상수 작음  주파수 특성 우수  광대역 증폭기에 적합

46 (2-4) 전류미러(Current mirror) 를 부하로 사용하는 CS Amplifier
4. Basic MOS Amplifiers & Small-Signal Analysis 27 (2-4) 전류미러(Current mirror) 를 부하로 사용하는 CS Amplifier VDD M1 vout M2 io M3 vi 소신호 등가회로 DC Bias 전류 = 0 vout + vi gm1vi ro1 ro2 - vout vin AV = gm1 (ro1 ll ro2 ) = - ~ (2-5) CMOS inverter형 CS Amplifier VDD M1 vout M2 vi gm2vi ro2 + vout vi gm1vi - ro1 ~ vout AV = = - (gm1+ gm2 ) ( ro1 ll ro2 ) vin

47 (2-6) CS Amplifier 의 주파수 특성 (High frequency)
4. Basic MOS Amplifiers & Small-Signal Analysis 28 (2-6) CS Amplifier 의 주파수 특성 (High frequency) C A B A B CGD VDD + vout vi CI ro ID gm1vi - Miller 정리 vout Rs vin M1 + vout vi CI ro1 CGD (1+gmro) gm1vi CL 1 - CGD (1+ gmro) CI= (CGS+CGB) vout (s) gm r o AV (s) = = vin (s) (1+ s/wp1) (1+ s/wp2) 1 wp1 = Dominant pole (우수극점)  주파수 특성에 영향 Rs[ C1+ CGD (1+gmro) ] 1 wp2 = Nondominant pole (비우수극점) 1 ro[ CL+ CGD (1+ gmro) ]

48 (3-1) 이상적인 전류원 부하를 갖는 CG Amplifier
4. Basic MOS Amplifiers & Small-Signal Analysis 29 (3) CG Amplifiers의 Small-Signal Analysis (3-1) 이상적인 전류원 부하를 갖는 CG Amplifier T형 등가회로 VDD + - vout is vi rs ro IDC vout io vout gmvgs gmbvbs ro=1/go D VGG G S vin vin 전압 이득 (Voltage Gain) : vi is = - = - gm1 vi rs vo = - is ro + vi = ( gm1 ro + 1 ) vi vout AV = = ( gm1 ro + 1 ) vin 전압이득  1보다 조금 (+) 값

49 (3-2) 저항 부하를 갖는 CG Amplifier 입력 저항 (Input Resistance) :
4. Basic MOS Amplifiers & Small-Signal Analysis 30 (3-2) 저항 부하를 갖는 CG Amplifier VDD RL vout VGG VBB D G S vin RL vout G D + vgs gmvgs gmbvbs ro=1/go - S - + B ix vx vx 입력 저항 (Input Resistance) : Rin = ix By vx - node Ix + gmvgs+ gmbvbs+ go(vout-vx) 0 = = Ix + gm (0-vx) + gmb (0-vx) + go(vout-vx) By vout - node 0 = gmvgs+ gmbvbs+ go(vout-vx) + vout/RL = gm (-vx) + gmb (-vx) + go(vout-vx) + vout/RL vx 1 + goRL 1 + goRL Rin = = = ix gm + gmb + go gm 출력 저항 RL이 0 일 때  입력저항 Rin   전류원 입력을 받고 전류를 출력하기에 적합 출력 저항 RL이 oo 일 때  입력저항 Rin 

50 (3-3) CG Amplifier 의 주파수 특성
4. Basic MOS Amplifiers & Small-Signal Analysis 31 (3-3) CG Amplifier 의 주파수 특성 VDD RL C2 RL D vout vout gmvgs gmbvbs ro D G G S S C1 Rs vi CI= (CGS+CBS) vin 1 C2= (CGD+CBD) wp1 = ( Rs II Ri ) C1 1 1 wp1 Rs C1 gm+ gmb 1 Rs C1 1 1 = Rs C1 Rs 2 WLCox + W CGSO + L CBS 3 우성극점의 크기가 CS Amplifier 에 비하여 크다  CG Amplifier 가 CS Amplifier 보다 주파수 특성 우수

51 (4) CD Amplifiers의 Small-Signal Analysis
4. Basic MOS Amplifiers & Small-Signal Analysis 32 (4) CD Amplifiers의 Small-Signal Analysis (4-1) 이상적인 전류원 부하를 갖는 CD Amplifier VDD D D G vin G + vin S ro vout gmvgs gmbvbs - IDC S vout 전압 이득 (Voltage Gain) : vgs = vi vo vbs = vo By KCL at node S vout gm gm AV = = = 1 vin ( gm gmb ) gm + gmb ro 전압이득  gmb 는 gm의 10내지 30% 이므로 전압 이득은 1보다 조금 작은 양 (+)의 수이다.

52 (4-2) 저항 부하를 가진 CD Amplifier 출력 저항 (Output Resistance) :
4. Basic MOS Amplifiers & Small-Signal Analysis 33 (4-2) 저항 부하를 가진 CD Amplifier VDD D D vin G b G vin VBB + S vgs gmvgs gmbvbs ro=1/go vout - RL S B iy + RL VSS vy - a 전압 이득 (Voltage Gain) : vout gm AV = = vin ( gm gmb ) roII RL vy 출력 저항 (Output Resistance) : Rout = iy Vin 0 By vout - node a b vy/RL + govy = iy + gmvgs+ gmbvbs iy + gm (0-vy) + gmb (0-vy) = vy 1 1 1 1 Rin = = = gm + 1/RL = II RL gm = iy gm + gmb + go + 1/RL gm

53 (4-3) CD Amplifier 의 주파수 특성 (High Frequency)
4. Basic MOS Amplifiers & Small-Signal Analysis 34 (4-3) CD Amplifier 의 주파수 특성 (High Frequency) VDD RL vout VBB D G S vin VSS RS CGD ro vs CGS gmvgs gmbvbs CGB vs RL CL 1 w-3dB(input) = gmb Rs CGD + CGB + CGS gm + gmb ~ gm + gmb = CL CD Amplifier 의 주파수 특성  CG Amplifier 과 CS Amplifier 보다 우수

54 실습 문제 4-1 : CG Rs 삽입시 출력측에서 본 저항(Ro) 구하기
4. Basic MOS Amplifiers & Small-Signal Analysis 35 실습 문제 4-1 : CG Rs 삽입시 출력측에서 본 저항(Ro) 구하기 VDD RL vout vin VGG VBB RS Ro

55 실습 문제 4-1 풀이 : CG Rs 삽입시 출력측에서 본 저항(Ro) 구하기
4. Basic MOS Amplifiers & Small-Signal Analysis 36 실습 문제 4-1 풀이 : CG Rs 삽입시 출력측에서 본 저항(Ro) 구하기 VDD RL vout vin VGG VBB RS Ro G vout ix D + vgs gmvgs gmbvbs + vx ro - - S VS RS

56 (5) Cascode Amplifiers의 Small-Signal Analysis
4. Basic MOS Amplifiers & Small-Signal Analysis 37 (5) Cascode Amplifiers의 Small-Signal Analysis VDD RL vout vin VSS vGG M1 M2 CG CS RL vout G2 D2 + vgs2 ro2=1/go2 gm2vgs2 gmb2vbs2 - G1 va S2 D1 vin + vgs1 ro1=1/go1 gm1vgs1 gmb1vbs1 - S1 B1, B2 By vout - node ro1 Ro ro2 vout - gm2vgs2+ gmb2vbs2 + go2 (vout-va) = RL gm2(-va) + gmb2(-va) + go2(vout-va) = By va - node vout - gm1vgs1+ gmb1vbs1 + go1va = gm1vin+ go1va = RL CG 출력저항 vout gm1RL Av = = - gm1[ RL II{gm2 (ro2 II RL ) ro1}] = - vin go1 (1+ go2RL ) 1+ gm2+ gmb2+ go2

57 (6) Differential Amplifiers의 Small-Signal Analysis
4. Basic MOS Amplifiers & Small-Signal Analysis 38 (6) Differential Amplifiers의 Small-Signal Analysis (6-1) Differential signal와 Single ended signal (1) Single ended signal + vout vin + - t - Differential signal + vout - CM level vin + - t t vin + -

58 (6-1) Differential signal와 Single ended signal (2)
4. Basic MOS Amplifiers & Small-Signal Analysis 39 (6-1) Differential signal와 Single ended signal (2) Differential signal advantage High rejection of environmental noise VDD RL vo1 vi1 M1 M2 vo2 vi2 vout1 vin1 CM level vin2 vout2 t Differential signal disadvantage Sensitive to input common mode level Change in input CM level : change is bias I, Gm or clipping ! vout1 vin1 CM level vin2 vout2 t

59 4. Basic MOS Amplifiers & Small-Signal Analysis
40 (6-2) Tail current VDD VDD RD RD RD RD vo1 vo2 vo1 vo2 ID1 ID2 ID1 ID2 M1 M2 M1 M2 vi1 vi1 vi2 vi2 ISS 출력 공통모드 전압 (VoCM)이 입력 공통모드 전압 (ViCM)에 영향을 받는다. VSS Tail current 첨가

60 Assume M1 and M2 are identical
41 (6-3) 저항성 부하를 갖는 NMOS 차동증폭기(1) Small signal analysis VDD RL vo1 VB VSS vi1 M1 M3 M2 vo2 vi2 Iss I1 I2 vc RL RL G1 D1 D2 G2 vi1 vo1 v02 vi2 + + vgs1 gm1vgs1 ro1 ro2 gm2vgs2 vgs2 VC - - S1 S2 ro3 Differential Signals Dvi vi1 - vi2 By vo1 - node = vo1 - vc vo1 Dvo vo1 - vo2 = - RL (I1 - I2) = - RL DI = gm1 (vi1 - vc) + + = 0 ro1 RL Current Equation By v02- node vo2 I1 = b/2 (vi1 - vc - VTH)2 vo2 - vc gm2 (vi2 - vc) + + = 0 ro2 RL I2 = b/2 (vi2 - vc - VTH)2 2ISS b/2 I1 + I2 = ISS DI = I1 - I2 = b/2 Dvi Dvi2 Assume M1 and M2 are identical Voltage Gain Dvo DI vo1 - vo2 Av = = -RL - RL GM = - gm1(ro II RL) gm1 RL Av = = - Dvi Dvi = Q:D vi =0 Q:D vi =0 vi1 - vi2 for ro >> RL DI GM = = b ISS = 2b I1Q = gm1(2) Dvi Q:D vi =0 Av = - gm1 RL

61 (6-3) 저항성 부하를 갖는 NMOS 차동증폭기(2)
4. Basic MOS Amplifiers & Small-Signal Analysis 42 (6-3) 저항성 부하를 갖는 NMOS 차동증폭기(2) Half-circuit 개념을 이용한 Small signal analysis VDD RL Vo1 Vin1 M1 M2 Vo2 Vin2 VSS ID1 ID2 M3 DC Bias Differential mode Half circuit RL RL G1 D1 + vgs1 gm1vgs1 ro1 - M1 S1 Common mode Half circuit RL RL G1 D1 + M1 vgs1 gm1vgs1 ro1 - ½ M3 S1 2ro3

62 (6-3) 저항성 부하를 갖는 NMOS 차동증폭기(3)
4. Basic MOS Amplifiers & Small-Signal Analysis 43 (6-3) 저항성 부하를 갖는 NMOS 차동증폭기(3) Active input common mode range é I ù V + ( V - V ) V min V - R SS + V ê ú GS 1 GS 3 TH 3 in , CM ë DD D 2 TH û VDD RD Vout1 Vin, CM M1 M2 Vb M3 Vout2 VTH V1 V2 Vin,CM Small-signal differential mode voltage gain

63 Differential mode input  두배 Common mode input  상쇄되어 없어짐
4. Basic MOS Amplifiers & Small-Signal Analysis 44 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(1) Differential to single ended amplifier VDD VDD Current mirror M4 M5 M4 M5 Vo Vo M1 M2 M1 M2 Vi1 Vi2 Vi1 Vi2 DC bias M3 DC bias M3 VSS VSS Differential mode input  두배 Common mode input  상쇄되어 없어짐

64 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(2)
4. Basic MOS Amplifiers & Small-Signal Analysis 45 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(2) 출력저항 ( RO ) R1 ro2 ro4 ro5 ro3 rS4 rS2 v1 rS1 v4 ro1 rS5 R4 R’1 R2 CG입력저항 Current mirror CG출력저항

65 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(3)
4. Basic MOS Amplifiers & Small-Signal Analysis 46 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(3) 차동모드 트랜스컨덕턴스 (Gmd ) R1 ro2 ro4 ro5 ro3 rS4 rS2 v1 rS1 v4 ro1 rS5 R4 R’1 R2

66 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(4)
4. Basic MOS Amplifiers & Small-Signal Analysis 47 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(4) 공통모드 트랜스컨덕턴스 (Gmc) R1 ro2 ro4 ro5 ro3 rS4 rS2 v1 rS1 v4 ro1 rS5 R4 R’1 R2 *유도과정 : 참고(박홍준 ; CMOS아날로그 집적회로 p337)

67 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(4)
4. Basic MOS Amplifiers & Small-Signal Analysis 48 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(4) 공통모드 이득 제거율 (Common mode rejection ratio : CMRR) Avc - + Vin_com Vout VSS VDD 공통모드 신호 증폭 Avd CMRR = Avc

68 NMOS 차동입력단 CMR max CMR min
4. Basic MOS Amplifiers & Small-Signal Analysis 49 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(5) Active input common mode voltage range (CMR) CMR : 최대의 이득을 얻기 위해 모든 트랜지스터 들이 saturation영역에서 동작하기 위한 입력 전압범위 VDD NMOS 차동입력단 CMR max M4 M5 Vo M1 M2 Vi1 Vi2 CMR min DC bias M3 VSS

69 PMOS 차동입력단 CMR max CMR min NMOS 차동입력단 PMOS 차동입력단 VSS VDD
4. Basic MOS Amplifiers & Small-Signal Analysis 50 (6-4) 능동(Active) 부하를 갖는 NMOS 차동증폭기(6) Active input common mode voltage range (CMR) PMOS 차동입력단 Vin - M1 M2 VDD M5 M3 VSS M4 Vin + CMR max CMR min NMOS 차동입력단 PMOS 차동입력단 VSS VDD

70 (6-5) CS Push-Pull Amplifier
4. Basic MOS Amplifiers & Small-Signal Analysis 51 (6-5) CS Push-Pull Amplifier VDD vout vin VSS M1 M2 VDD vout vin VSS M1 M2 VB2 + - VB1 S2 + vsg2 ro2 gm2vsg2 vin G2 - D2 vout vin G1 + D1 ro1 vgs1 gm1vgs1 - S1 M1 과 M2는 각각 Amplifier 이면서 Load 로 동작됨 M1 과 M2의 Gate에 Bias Circuit가 요구됨 By vout - node gm2vsg2 = gm1vgs1+ vout /ro1 + vout /ro2 gm2 (0-vin) = gm1 (vin-0) + vout /ro1 + vout /ro2 vout A v = (gm1+ gm2) (ro1 II ro2) = - vin

71 5. Current Sources & Mirrors
52 5. Current Sources & Mirrors (1) Passive & Active Loads Passive Load Ideal Current Source Active Load VDD VDD vout vin VSS Ideal Current Source IB VDD vout vin VSS Active Load VGG Passive Load RL vout vin VSS Loading RL rop Biasing (VDD - VOUTQ)/ RL IB IMP

72 Operating Resistance Rout
5. Current Sources & Mirrors 53 (2) Ideal & Active Current Sources Equivalent Circuit I-V Curve Characteristics Iout Output current (Iout) should be independendent of an output voltage (Vout) Iout + Ideal Current Source Vout - Vout Iout Operating Range Iout + Large Signal Analysis Active Current Source Vout dIout Operating Resistance Rout Slope = = Rout-1 - dVout Small Signal Analysis Vout Operating range

73 VDS(sat) =VGS-VTH =VB-VTH
5. Current Sources & Mirrors 54 (3) Simple NMOS Current Sources Equivalent Circuit I-V Curve Output Resistance Iout Iout = IDS + VB Vout dIout - Slope = = rout-1 dVout vx 1 Rout = = ro = ix go Vout= VDS ix VDS(sat) =VGS-VTH =VB-VTH + + vgs ro vx gmvgs - IDS(sat) = b/2(VGS- VTHn)2 = b/2 D2 - 2IDS(sat) b Vout D =

74 (4) Cascode Current Sources
5. Current Sources & Mirrors 55 (4) Cascode Current Sources Equivalent Circuit Characteristics Vout + - Iout VB1 VB2 M2 M1 vx ix Output Resistance vx Rout = = ro1 + ro2 + (gm2ro2)ro1 ix (gm2ro2)ro1 Operating Range + Down to 2D vgs2 ro2 ix gm2vgs2 More Stacking : Problem for Low-Supply Applications - + vx + - vgs1 ro1 gm1vgs1 -

75 (5) Advanced Cascode Current Sources
5. Current Sources & Mirrors 56 (5) Advanced Cascode Current Sources Equivalent Circuit Characteristics Output Resistance A ix VB2 + M2 - + vx By vx-node M1 - VB1 ix gm2vgs2+ gmb2vbs2 + go2 (vx-vy) = gm2[A(0-vy)-vy]+ go2(vx-vy) = (0-vy)A + A By vy-node - + vgs2 ro2 ix gm1vgs1+ go1 vy ix = = go1 vy gm2vgs2 - + vx vy + - vx Rout = = ro1 + ro2 + (A+1)(gm2ro2)ro1 vgs1 ro1 ix gm1vgs1 - A(gm2ro2)ro1

76 (6) Basic Current Mirror
5. Current Sources & Mirrors 57 (6) Basic Current Mirror M2 Iout VSS Iin M1 D M1 : Current Input M2 : Current Output M1와 M2가 Ideal Matching 일때, I1= I2 Operating Range : Down to D Output Resistance : Rout= ro2 Mismatch Problem ( )2( VGS-VTH2)2 ( 1+ lVDS2) W L 1 2 m Cox Iout = Iin ( )1( VGS-VTH1)2 ( 1+ lVDS1) W L 1 2 m Cox transistor size W/L threshold voltage VDS

77 (7) Wilson Current Mirror (1)
5. Current Sources & Mirrors 58 (7) Wilson Current Mirror (1) M1 Iout Iin M3 M2 V1 V2 VDD Rin Rout Vout + - M1, M2 는 소신호 피이드백 경로가 됨 V2가 증가하여 전류 Iout이 증가하면 V1증가하므로 M1의 증폭으로 V2가 크게 감소함 결국 VGS3가 감소 하게 되어 Iout이 감소하게 됨. 이와 같은 과정은 역으로도 진행되어 Iout이 일정하게 유지됨 --> 소신호 출력저항이 큰값 출력저항 (Rout) + -

78 (7) Wilson Current Mirror (2)
5. Current Sources & Mirrors 59 (7) Wilson Current Mirror (2) M2 Iout VSS Iin M1 VTH + D M3 D Operating Range : Down to VTH + 2D VDS Mismatch VDS1 = VGS3 + VGS2 = VGS3 + VDS2 > VDS2 M2 Iout VSS Iin M1 VTH + D M4 D M3 Improved Version Operating Range : Down to VTH + 2D Same Performance but VDS1 = VGS3 + VGS2 - VGS4 = VGS3 + VDS2 - VGS4 VDS2

79 (8) Cascode Current Mirror(1)
5. Current Sources & Mirrors 60 (8) Cascode Current Mirror(1) Iin Iout Output Resistance : Rout = (gm4ro4)ro2 VTH + D M3 M4 Operating Range : Down to VTH + 2D D VDS Mismatch Avoided VDS1 = VGS4 - VGS2 + VDS2 VTH + D M1 M2 VTH + D VDS2 VSS Iin Iout Operating Range Improved Version : 2D VTH + D VTH + 2D Output Resistance : Rout = (gmro)ro D VTH + D D VSS

80 (8) Cascode Current Mirror(2)
5. Current Sources & Mirrors 61 (8) Cascode Current Mirror(2) Small signal analysis M1 M2 M3 M4 M1 M2 M2  M1 : saturation  M2 : saturation

81 (8) Cascode Current Mirror(3)
5. Current Sources & Mirrors 62 (8) Cascode Current Mirror(3) M1 M2 M3 M1 M2 M3 M4 M5 M6  M1 : saturation  M2 : saturation  M3 : saturation

82 (8) Cascode Current Mirror(4)
5. Current Sources & Mirrors 63 (8) Cascode Current Mirror(4) Ma1 Mb1 Ma0 Mb0 Ma2 Mb2 Ma3 Mb3 Man Mbn VDD


Download ppt "CMOS Analog 집적회로 설계 전북대학교 방 준 호."

Similar presentations


Ads by Google