Download presentation
Presentation is loading. Please wait.
Published bySheila Strickland Modified over 8 years ago
1
PHOTOSYNTHESIS
2
2 Photosynthesis Anabolic (small molecules combined)Anabolic (small molecules combined) Endergonic (stores energy)Endergonic (stores energy) Carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose).Carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose). 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 glucose SUN photons
3
3 Question: Where does photosynthesis take place?
4
4 Plants Autotrophs – produce their own food (glucose)Autotrophs – produce their own food (glucose) Process called photosynthesisProcess called photosynthesis Mainly occurs in the leaves:Mainly occurs in the leaves: a.stoma - pores b.mesophyll cells Stoma Mesophyll Cell Chloroplast
5
5 Stomata (stoma) Pores in a plant’s cuticle through which water vapor and gases (CO 2 & O 2 ) are exchanged between the plant and the atmosphere. Guard Cell Carbon Dioxide (CO 2 ) Oxygen (O 2 ) Found on the underside of leaves Stoma
6
6 Mesophyll Cell of Leaf Cell Wall Nucleus Chloroplast Central Vacuole Photosynthesis occurs in these cells!
7
7 Chloroplast Organellephotosynthesis Organelle where photosynthesis takes place. Granum Thylakoid Stroma Outer Membrane Inner Membrane Thylakoid stacks are connected together
8
8 Thylakoid Thylakoid Membrane Thylakoid Space Granum Grana make up the inner membrane
9
9 Question: Why are plants green?
10
10 Chlorophyll Molecules Located in the thylakoid membranesLocated in the thylakoid membranes Chlorophyll have Mg + in the centerChlorophyll have Mg + in the center Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red- 660 nm are most important)Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red- 660 nm are most important) Plants are green because the green wavelength is reflected, not absorbedPlants are green because the green wavelength is reflected, not absorbed.
11
11
12
12 Wavelength of Light (nm) 400500600700 Short waveLong wave (more energy)(less energy)
13
13 Absorption of Light by Chlorophyll wavelength Absorption violet blue green yellow orange red Chlorophyll absorbs blue-violet & red light best
14
14 Question: During the fall, what causes the leaves to change colors?
15
15 Fall Colors In addition to the chlorophyll pigments, there are other pigments presentIn addition to the chlorophyll pigments, there are other pigments present During the fall, the green chlorophyll pigments are greatly reduced revealing the other pigmentsDuring the fall, the green chlorophyll pigments are greatly reduced revealing the other pigments Carotenoids are pigments that are either red, orange, or yellowCarotenoids are pigments that are either red, orange, or yellow
16
16 Question: What do cells use for energy?
17
17 Energy for Life on Earth Sunlight is the ULTIMATE energy for all life on Earth Plants store energy in the chemical bonds of sugars Chemical energy is released as ATP during cellular respiration
18
18 Structure of ATP ATP stands for adenosine triphosphate It is composed of the nitrogen base ADENINE, the pentose (5C) sugar RIBOSE, and three PHOSPHATE groups The LAST phosphate group is bonded with a HIGH ENERGY chemical bond This bond can be BROKEN to release ENERGY for CELLS to use
19
19 High Energy Phosphate Bond
20
20 Parts of Photosynthesis
21
21 Two Parts of Photosynthesis Two reactions make up photosynthesis: 1.Light Reaction or Light Dependent Reaction - Produces energy from solar power (photons) in the form of ATP and NADPH. SUN
22
22 Two Parts of Photosynthesis 2. Calvin Cycle or Light Independent Reaction Also called Carbon Fixation or C 3 FixationAlso called Carbon Fixation or C 3 Fixation Uses energy (ATP and NADPH) from light reaction to make sugar (glucose).Uses energy (ATP and NADPH) from light reaction to make sugar (glucose).
23
23 Light Reaction (Electron Flow) Occurs in the Thylakoid membranesOccurs in the Thylakoid membranes During the light reaction, there are two possible routes for electron flow:During the light reaction, there are two possible routes for electron flow: A.Cyclic Electron Flow B.Noncyclic Electron Flow
24
24 Chemiosmosis Powers ATP synthesisPowers ATP synthesis Takes place across the thylakoid membraneTakes place across the thylakoid membrane Uses ETC and ATP synthase (enzyme)Uses ETC and ATP synthase (enzyme) H+ move down their concentration gradient through channels of ATP synthase forming ATP from ADPH+ move down their concentration gradient through channels of ATP synthase forming ATP from ADP
25
25 Calvin Cycle Carbon Fixation (light independent reaction)Carbon Fixation (light independent reaction) C 3 plants (80% of plants on earth)C 3 plants (80% of plants on earth) Occurs in the stroma Occurs in the stroma Uses ATP and NADPH from light reaction as energyUses ATP and NADPH from light reaction as energy Uses CO 2Uses CO 2 To produce glucose: it takes 6 turns and uses 18 ATP and 12 NADPH.To produce glucose: it takes 6 turns and uses 18 ATP and 12 NADPH.
26
26 Chloroplast Granum Thylakoid STROMA– where Calvin Cycle occurs Outer Membrane Inner Membrane
27
27 Calvin Cycle (C 3 fixation) 6CO 2 6C-C-C-C-C-C 6C-C-C 6C-C-C-C-C 12PGA RuBP 12G 3 P (unstable) 6NADPH 6ATP C-C-C-C-C-C Glucose (6C) (36C) (30C) (6C) 6C-C-C C3C3 glucose
28
28 Calvin Cycle Remember: C 3 = Calvin Cycle C3C3 Glucose
29
29 Photorespiration Occurs on hot, dry, bright daysOccurs on hot, dry, bright days Stomates closeStomates close Fixation of O 2 instead of CO 2Fixation of O 2 instead of CO 2 Produces 2-C molecules instead of 3-C sugar moleculesProduces 2-C molecules instead of 3-C sugar molecules Produces no sugar molecules or no ATPProduces no sugar molecules or no ATP
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.