Download presentation
Presentation is loading. Please wait.
Published byElmer Wright Modified over 8 years ago
1
Measurements of 1 / and 2 / Masashi Hazumi (KEK) July 31, 2006 XXXIII International Conference on High Energy Physics (ICHEP’06) Many thanks to many people, in particular to: T. Aushev, T. Browder, P. Chang, R. Faccini, K. George, T. Gershon, K. Hara, H. Ishino, A. Lazzaro, S. Olsen, Y. Sakai, O. Tajima and K. Trabelsi
2
2 New Results from BaBar and Belle for Stringent Tests of the Kobayashi-Maskawa Model of CP Violation
3
3 Main New Results Covered in This Talk (all results are preliminary) 1 with tree diagram (b ccs) 1 with tree diagram (b ccs) BaBar: sin2 in B 0 J/ (2S)K S, c K S, c1 K S, J/ BaBar: sin2 in B 0 J/ (2S)K S, c K S, c1 K S, J/ Belle: sin2 1 in B 0 J/ Belle: sin2 1 in B 0 J/ 1 with penguin diagram (b sqq) 1 with penguin diagram (b sqq) BaBar: B 0 K + K K 0, ’K 0, K S K S K S, K S, K S, 0 K SBaBar: B 0 K + K K 0, ’K 0, K S K S K S, K S, K S, 0 K S Belle: B 0 ’K 0, 0 K SBelle: B 0 ’K 0, 0 K S Belle: B 0 K 0, K + K K S, K S K S K S, f 0 K S, K SBelle: B 0 K 0, K + K K S, K S K S K S, f 0 K S, K S 2 2 BaBar: , , BaBar: , , Belle: Belle: Belle: Belle: K.Hara K.George A. Lazzaro O. Tajima This talk H. Ishino S. Telnov
4
4 Some other new results and recently published results also mentioned but very briefly. / 3 -related R.Kowalewski (next speaker) My apologies if your favorites are not included Remarks
5
5 25 th Anniversary of Time-dependent CP Violation (tCPV)
6
6 Tony, are you nuts? Look at this. We need millions of B and use them to search for mixing and CP violation This took us six months! Tribute from S. Olsen 5 B mesons
7
7 PEP-II at SLAC KEKB at KEK Belle BaBar 9GeV (e ) 3.1GeV (e + ) peak luminosity: 1.12 10 34 cm 2 s 1 Two Asymmetric-energy B Factories 8GeV (e ) 3.5GeV (e + ) peak luminosity: 1.65 10 34 cm 2 s 1 world record 11 nations, 80 institutes, 623 persons 13 countries, 57 institutes, ~400 collaborators
8
8 Integrated Luminosity PEP-II for BaBar As of July 24, 2006 KEKB for Belle KEKB + PEP-II
9
9 Far beyond the design luminosities of both proposals Triumph in accelerator science reached on July 13, 2006 ~ 1 Billion BB pairs
10
10 Motivation Q. What is the main source of CP violation ? A. Kobayashi-Maskawa phase IS the dominant source ! Two promising approaches 1)Overconstrain the unitarity triangle: precise measurements of and needed 2) Compare sin2 in tree diagram and penguin diagram (e.g. b s) sin2 history (1998-2005) Q. Are there deviations from the CKM picture ? (e.g. new CP-violating phases) Paradigm shift !
11
11 1
12
12 Time-dependent CP violation (tCPV) “ double-slit experiment ” with particles and antiparticles b c d c s d J/ KSKS b d c KSKS b c s ddt t + Quantum interference between two diagrams tree diagram box diagram + tree diagram Vtd You need to “wait” (i.e. t 0) to have the box diagram contribution.
13
13 tCPV in B 0 decays ( A = C a la BaBar) Mixing-induced CPVDirect CPV e.g. for J/ Ks S = CP sin2 1 = +sin2 1 A = 0 to a good approximation ( CP : CP eigenvalue) e.g. for J/ Ks S = CP sin2 1 = +sin2 1 A = 0 to a good approximation ( CP : CP eigenvalue)
14
14 R : detector resolution w : wrong tag fraction (misidentification of flavor) (1-2w) quality of flavor tagging They are well determined by using control sample D * l D (*) etc… S = 0.65 A = 0.00 B 0 tag _ _ - CP sin2 1 Mixing of D * l Good tag region (OF-SF)/(OF+SF) t| (ps)
15
15 1 with trees - Results -
16
16 B 0 J/ K 0 : 535 M BB pairs B 0 J/ K S B 0 J/ K L Nsig = 7482 Purity 97 % CP odd Nsig = 6512 Purity 59 % CP even p KL information is poor lower purity Belle preliminary 00 _ BELLE-CONF-0647 O. Tajima
17
17 B 0 J/ K S B 0 tag _ 0 B 0 J/ K L B 0 tag _ 0 Asym. = - CP sin2 1 sin m t sin2 1 = +0.643 ±0.038 A = - 0.001 ±0.028 sin2 1 = +0.641 ±0.057 A = +0.045 ±0.033 stat error BELLE-CONF-0647 O. Tajima background subtracted
18
18 B 0 J/ K S B 0 tag _ 0 B 0 J/ K L B 0 tag _ 0 _ B 0 J/ K 0 : combined result Asym. = - CP sin2 1 sin m t sin2 1 = +0.643 ±0.038 A = - 0.001 ±0.028 sin2 1 = +0.641 ±0.057 A = +0.045 ±0.033 stat error BELLE-CONF-0647 O. Tajima
19
19 B 0 J/ K 0 : combined result sin2 1 = 0.642 ±0.031 (stat) ±0.017 (syst) A = 0.018 ±0.021 (stat) ±0.014 (syst) previous measurement sin2 = 0.652 0.044 (388 M BB pairs) B 0 tag _ 535 M BB pairs _ _ Belle preliminary BELLE-CONF-0647 O. Tajima
20
20 K.George A = 0.07 0.028 0.018 BaBar2006: sin2 in b ccs B 0 J/ (2S)K S, c K S, c1 K S, J/
21
21 2006: BaBar + Belle Consistency with V ub, 3 / R. Kowalewski (next speaker)
22
22 (not sin2 ) measurements B 0 D* + D* Ks Time-dependent Dalitz analysis (T.Browder, A. Datta et al. 2000) cos2 > 0 (94%CL, model-dependent) B 0 Dh 0 (h 0 = 0 etc.) Time-dependent Dalitz analysis cos2 > 0 Belle: 98.3%CL (hep-ex/0605023, accepted by PRL) BaBar 87% CL (BABAR-CONF06/017) K.George
23
23 1 with penguins
24
24 3 theoretically-clean modes Ks, ’Ks, 3Ks
25
25 Results for 3 theoretically-clean modes K 0, 'K 0, KsKsKs
26
26 Belle 2006: B 0 K 0 signal B 0 mass B 0 momentum _ 535M BB (bkg subtracted) K K , K S K K , K S K S K L, K S 114 17 K L signal 114 17 K L signal 307 21 K S signal 307 21 K S signal Three modes New ! BELLE-CONF-0647
27
27 Belle 2006: tCPV in B 0 K 0 “sin2 1 ” = 0.50 0.21(stat) 0.06(syst) A = 0.07 0.15(stat) 0.05(syst) “sin2 1 ” = 0.50 0.21(stat) 0.06(syst) A = 0.07 0.15(stat) 0.05(syst) K S and K L combined background subtracted good tags t – t for K L t distribution and asymmetry _ 535M BB Consistent with the SM (~1 lower) Consistent with Belle 2005 (Belle2005: “sin2 1 ” = +0.44 The most precise measurement now Consistent with the SM (~1 lower) Consistent with Belle 2005 (Belle2005: “sin2 1 ” = +0.44 The most precise measurement now unbinned fit SM BELLE-CONF-0647
28
28 BaBar 2006: tCPV in B 0 K 0 Obtain CP parameters for 2-body and 3-body modes simultaneously by time-dependent Dalitz fit _ 347M BB KKKSKKKSKKKLKKKSKKKSKKKL 1516 65 K K K 0 signal 1516 65 K K K 0 signal
29
29 K 0 : sin2 eff = +0.12 ± 0.31(stat) ± 0.10 (syst) BaBar 2006: tCPV in B 0 K 0 measurement (not sin2 ) Rejected (within SM) 4.6
30
30 Belle 2006: B 0 'K 0 signal 1421 46 'K S signal 1421 46 'K S signal 454 39 'K L signal 454 39 'K L signal _ 535M BB (bkg subtracted) B 0 mass B 0 momentum
31
31 Belle 2006: tCPV in B 0 'K 0 “sin2 1 ” = 0.64 0.10(stat) 0.04(syst) A = 0.01 0.07(stat) 0.05(syst) “sin2 1 ” = 0.64 0.10(stat) 0.04(syst) A = 0.01 0.07(stat) 0.05(syst) _ 535M BB First observation of tCPV (5.6 in a single b s mode Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2 1 ” = +0.62 First observation of tCPV (5.6 in a single b s mode Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2 1 ” = +0.62 t distribution and asymmetry '' 'K S and 'K L combined background subtracted good tags ' t – t for 'K L BELLE-CONF-0647
32
32 BaBar 2006: tCPV in B 0 'K 0 Cf. BaBar 2005: “sin2 ” = +0.36 0.13 0.03 “sin2 ” = 0.55 0.11(stat) 0.02(syst) A = 0.15 0.07(stat) 0.03(syst) “sin2 ” = 0.55 0.11(stat) 0.02(syst) A = 0.15 0.07(stat) 0.03(syst) “sin2 ” 4.9 from zero. _ 347M BB
33
33 Belle 2006: tCPV in B 0 K S K S K S “sin2 1 ” = 0.30 0.32(stat) 0.08(syst) A = 0.31 0.20(stat) 0.07(syst) “sin2 1 ” = 0.30 0.32(stat) 0.08(syst) A = 0.31 0.20(stat) 0.07(syst) 185 17 K S K S K S signal 185 17 K S K S K S signal B 0 mass _ 535M BB t distribution and asymmetry background subtracted good tags BELLE-CONF-0647
34
34 “sin2 ” = 0.66 0.26(stat) 0.08(syst) A = 0.14 0.22(stat) 0.05(syst) “sin2 ” = 0.66 0.26(stat) 0.08(syst) A = 0.14 0.22(stat) 0.05(syst) BaBar 2006: tCPV in B 0 K S K S K S 176 17 K S K S K S signal 176 17 K S K S K S signal t distribution and asymmetry _ 347M BB
35
35 Results for other b s modes (~20sec/result)
36
36 Belle 2006: tCPV in B 0 f 0 K S “sin2 1 ” = 0.23(stat) 0.11(syst) A = 0.15(stat) 0.07(syst) “sin2 1 ” = 0.23(stat) 0.11(syst) A = 0.15(stat) 0.07(syst) _ 535M BB 377 25 f 0 K S signal Raw symmetry B 0 mass good tags mass BELLE-CONF-0648
37
37 BaBar 2006: tCPV in B 0 K S “sin2 ” = 0.33 0.26(stat) 0.04(syst) A = 0.20 0.16(stat) 0.03(syst) “sin2 ” = 0.33 0.26(stat) 0.04(syst) A = 0.20 0.16(stat) 0.03(syst) 425 28 0 K S signal 425 28 0 K S signal _ 347M BB
38
38 Belle 2006: tCPV in B 0 K S “sin2 1 ” = 0.35(stat) 0.08(syst) A = 0.14(stat) 0.05(syst) “sin2 1 ” = 0.35(stat) 0.08(syst) A = 0.14(stat) 0.05(syst) _ 535M BB 515 32 0 K S signal 515 32 0 K S signal Raw symmetry B 0 mass good tags BELLE-CONF-0648
39
39 Belle 2006: tCPV in B 0 K K K S “sin2 1 ” = 0.15(stat) 0.03(syst) (CP-even) A = 0.10(stat) 0.05(syst) “sin2 1 ” = 0.15(stat) 0.03(syst) (CP-even) A = 0.10(stat) 0.05(syst) _ 535M BB 840 34 K S signal 840 34 K S signal Raw symmetry B 0 mass good tags +0.21 0.13 BELLE-CONF-0648
40
40 Belle 2006: tCPV in B 0 K S “sin2 1 ” = 0.46(stat) 0.07(syst) A = 0.29(stat) 0.06(syst) “sin2 1 ” = 0.46(stat) 0.07(syst) A = 0.29(stat) 0.06(syst) _ 535M BB 118 18 K S signal 118 18 K S signal B 0 mass Raw symmetry good tags BELLE-CONF-0648
41
41 BaBar 2006: tCPV in B 0 K S “sin2 ” = 0.62 (stat) 0.02(syst) A = 0.43 (stat) 0.03(syst) “sin2 ” = 0.62 (stat) 0.02(syst) A = 0.43 (stat) 0.03(syst) +0.23 0.25 +0.25 0.30 142 17 0 K S signal _ 347M BB
42
42 BaBar 2006: tCPV in B 0 K S “sin2 ” = 0.17 0.52(stat) 0.26(syst) A = 0.64 0.41(stat) 0.25(syst) “sin2 ” = 0.17 0.52(stat) 0.26(syst) A = 0.64 0.41(stat) 0.25(syst) 111 19 K S signal 111 19 K S signal quasi 2-body approach (restricting to the region dominated by 0 ) _ 347M BB
43
43 2006: 1 with b s Penguins Smaller than b ccs in all of 9 modes Smaller than b ccs in all of 9 modes Theory tends to predict positive shifts (originating from phase in Vts) Naïve average of all b s modes sin2 eff = 0.52 ± 0.05 2.6 deviation between penguin and tree (b s) (b c) Naïve average of all b s modes sin2 eff = 0.52 ± 0.05 2.6 deviation between penguin and tree (b s) (b c) More statistics crucial for mode-by-mode studies
44
44 Standard penguin (bird), or something else (rabbit may be) ? More statistics crucial for mode-by-mode studies
45
45 Other handles to search for new physics with penguin diagrams B 0 KsKs (b d penguin): even higher statistics needed B sum rule [Gronau, Rosner 2005] A( K 0 0 ) = A( K ) + A( K 0 + ) – A( K + 0 ) B 0 Ks 0 (electromagnetic penguin) New physics may lead to right handed currents. This can be investigated using time-dependent CPV measurements of b s decays and will be discussed in Barlow's talk. S ~ 0 expected in SM 0.12 0.11 0.16 0.04
46
46 2 1 “beam” 2 “banana”
47
47 tCPV and 2 ( ) 11 33 22 V ud V * ub V td V * tb V cd V * cb B0B0 d b – d – bt – t B0B0 – V * tb V td V * tb V td Mixing diagramDecay diagram (tree) B0B0 b – d d u – d – u // // V ud V * ub With the tree diagram only S = +sin2 2 A = 0 S = +sin2 2 A = 0 3 possibilities:
48
48 Belle 2006: B 0 → + − decay (CP asymmetry) first error: stat., second: syst. background subtracted + − yields + − asymmetry Large Direct CP violation (5.5 ) Large mixing-induced CP violation (5.6 ) confidence level contour H. Ishino BELLE-CONF-0649 _ 535M BB 1464±65 signal events
49
49 S. Telnov BaBar 2006: tCPV in B 0 confidence level contour Evidence for CP violation (3.6 ) Direct CP violation not yet observed
50
50 History of B 0 → + − decay 2.3 diff. btw. Belle and BaBar ( C = A )
51
51 The results support the expectation from SU(3) symmetry that HFAG summer 2005 Interpretation: Direct CP violation+SU(3) N.G. Deshpande and X.-G. He, PRL 75, 1703 (1995) M. Gronau and J.L. Rosner, PLB 595, 339 (2004) ICHEP2006 World Average
52
52 :tough bananas A world average observation of large direct CPV Large penguin diagram (P) ~ Tree diagram (T) Large strong phase difference between P and T B 0d0d d b d u u W g ++ -- V td V * tb t d
53
53 Isospin analysis: flavor SU(2) symmetry Model-independent (symmetry-dependent) method SU(2) breaking effect well below present statistical errors “Penguin pollution” can be removed by isospin analysis [Gronau-London 1990]
54
54 2 constraints from B 0 → + − decay inputs B ( + 0 ) = (5.75 0.42) B ( + - ) = (5.20 0.25) 10 -6 B ( 0 0 ) = (1.30 0.21) A ( 0 0 ) = +0.35 0.33 S ( + - ) = 0.59 0.09 A ( + - ) = +0.39 0.07 inputs B ( + 0 ) = (5.75 0.42) B ( + - ) = (5.20 0.25) 10 -6 B ( 0 0 ) = (1.30 0.21) A ( 0 0 ) = +0.35 0.33 S ( + - ) = 0.59 0.09 A ( + - ) = +0.39 0.07 No stringent constraint obtained with system alone need and
55
55 tCPV with B 0 Even worse on first sight... –Dirty final state: –Mixture of CP = +1 and 1: need to know each fraction (A + +A - )/√2 A || (A + -A - )/√2 A⊥A⊥ A0A0 + + A0A0 A+A+ A-A- +1 1 1 CP vector
56
56 Isospin analysis with B Branching fraction for B 0 is larger than Branching fraction for B 0 is small (<1.1x10 -6 ) –small penguin pollution ~100% longitudinally polarized (~pure CP-even state) –no need for elaborate angular analysis No significant 3-body/4-body contamination Dirty final states including 0 –OK in the clean e + e environment the best mode as of summer 2005 the best mode as of summer 2005
57
57 BaBar2006: tCPV in B
58
58 BaBar2006: B (cont.) B 0 branching fraction: indication at 3.0 B + branching fraction
59
59 2 constraints from B 0 → + − decay New branching fraction Isospin triangle now closed (new ) constraint on 2 becomes less stringent.
60
60 BaBar2006: B Dalitz analysis Preliminary result in 2004 (16 parameters ignoring ) is superseded. Interference info. on strong phase difference B0B0 B0B0
61
61 ICHEP2006: BaBar( / / ) + Belle( / ) Global Fit = [ 98 ] º +5 -19 / 2 = [93 ] +11 9 consistent with a global fit w/o / 2
62
62 sets a “ window ” around 90 chooses the correct position inside the window: revival of ! essential to suppress 2 ~ 0 or 180 Good agreement b/w the CKM fit ( determined by others) and the direct measurements Still a lot to do –solution around 0 or 180 , which requires |P/T|~1, can/should be much more suppressed e.g. Model-independent constraint using K* (robust against SU(3) breaking) [Beneke-Gronau-Rohrer-Spranger 2006] –subtleties in statistical analyses with small statistics –uncertainty in background modeling, unknown phases etc. / 2 : Discussions
63
63 Belle 2006: 2 from B Dalitz analysis + isospin (pentagon) analysis 26(Dalitz) + 5(Br( ), Br( ), Br( ), A ( ), and A ( )) 2 (degree) 1-CL Results mass helicity / 2 = [83 ] +12 (1 ) (no constraint at 2 will be included in the world average BELLE-CONF-0650 _ 449M BB
64
64 Summary tCPV allows a direct access to fundamental EW parameters with small hadronic uncertainties in spite of large hadronic uncertainties in branching fractions !tCPV allows a direct access to fundamental EW parameters with small hadronic uncertainties in spite of large hadronic uncertainties in branching fractions ! sin2 1 now determined with 4% accuracysin2 1 now determined with 4% accuracy tCPV in b s: interesting (and tantalizing) hint of deviation from SM expectations: only an order of magnitude more data will resolve the issuetCPV in b s: interesting (and tantalizing) hint of deviation from SM expectations: only an order of magnitude more data will resolve the issue With improved statistics and sophisticated analyses, it has become clear that 2 is harder to determine than we thought at ICHEP2004; however, statistics are still the main obstacle.With improved statistics and sophisticated analyses, it has become clear that 2 is harder to determine than we thought at ICHEP2004; however, statistics are still the main obstacle. My talk is just a status report ! The best of two B factories is yet to come ! My talk is just a status report ! The best of two B factories is yet to come ! tCPVBeautyin
66
66 Both 1 / and 2 / Determined from Measurements of Time-dependent CP Asymmetries in the B Meson System
67
67 Belle 2006: Systematic errors of B 0 J/ K 0 Sin2 1 A Vertexing0.0120.009 Flavor tagging0.0040.003 t Resolution 0.0060.001 Physics parameters.0.001 Possible fit bias0.0070.004 BG fractions (J/ K S ) 0.0030.001 BG fractions (J/ K L ) 0.0050.002 BG t 0.001 Tag-Side interference0.0010.009 total0.0170.014
68
68 J/ K 0 J/ K S J/ K L q=+1 q=-1 SVD1 SVD2 ntrk tag >=6 ntrk tag =5 ntrk tag =4 ntrk tag =3 ntrk tag =2 ntrk tag =1 r 0.875-1.000 0.750-0.875 0.625-0.750 0.500-0.625 0.250-0.500 0.100-0.250
69
69 KEKB Integrated luminosity B 0 J/ K S 0 B 0 J/ K L 0
70
70 2006: World Average 0.675 0.026
71
71 2006: BaBar + Belle No direct CPV in the SM: will see with more data ~2 difference b/w BaBar and Belle
72
72 BaBar: statistical error: 0.034 0.026 More precise measurements possible with more data ! More precise measurements possible with more data ! K.George
73
73 Belle 2006: B 0 K S helicity _ 532M BB Consistent with the model used in the analysis [P-wave ( ) + small non P-wave component obtained from Dalitz analysis] Consistent with the model used in the analysis [P-wave ( ) + small non P-wave component obtained from Dalitz analysis]
74
74 Belle 2006: tCPV in B 0 K 0 _ 532M BB KSKS KSKS KLKL KLKL “sin2 1 ” = +0.50 0.23(stat) “sin2 1 ” = +0.46 0.56(stat)
75
75 Belle 2006: tCPV in B 0 'K 0 _ 532M BB 'KS'KS 'KS'KS 'KL'KL 'KL'KL “sin2 1 ” = +0.67 0.11(stat) “sin2 1 ” = +0.48 0.24(stat)
76
76 Belle 2006: tCPV in B 0 'K 0 “sin2 1 ” with subsamples Errors are statistical only
77
77 Belle 2006: tCPV in B 0 'K 0 Significance of tCPV S = 0 ruled out with >5.6 at any A
78
78
79
79
80
80 B 0 → + − decay C =−A 2.3 diff. btw. Belle and BaBar
81
81
82
82
83
83
84
84 (1.4 b/w BaBar and Belle)
85
85
86
86
87
87
88
88 UTfit: from , , All combine d
90
90 The Kobayashi-Maskawa weak phase (0,0)(0,1) _ _ ( , ) 1()1() 3()3() 2()2() Normalized with |VcdVcb*| = (1 2 /2) = (1 2 /2) In particular, V td = |V td |exp( i 1 ) V ub = |V ub |exp( i 3 ) A 3 3 generations CP-violating phase
91
91 What ’ s CP violation ? It is a partial rate asymmetry ! |B |f 1 = | 1 |e is e i 2 = | 2 |e is’ e i ’ |B |f 1 = | 1 |e is e i 2 = | 2 |e is’ e i ’ CP ’: weak phase diff. : previous slide s s’: static phase diff. : FSI, Resonance, m ’: weak phase diff. : previous slide s s’: static phase diff. : FSI, Resonance, m
92
92 Wolfenstein parameterization
93
93 Inclusive e ’ s at the ϒ (4S) 2.02.22.42.6 Belle CLEO result in ~1980 Tribute from S. Olsen
94
94 Back to the Future 1981 2006
95
95 PEP-II KEKB Belle BaBar 9GeV (e ) 3.1GeV (e + ) peak luminosity: 1.12 10 34 cm 2 s 1 Two Asymmetric-energy B Factories 8GeV (e ) 3.5GeV (e + ) peak luminosity: 1.65 10 34 cm 2 s 1 world record ! Charged tracking/vertexing SVD: SVD: (-7/03) 3-layer DSSD Si µstrip (-7/03) 3-layer DSSD Si µstrip (8/03-) 4-layer (8/03-) 4-layer CDC: 50 layers (He-ethane) CDC: 50 layers (He-ethane) Hadron identification CDC: dE/dx CDC: dE/dx TOF: time-of-flight TOF: time-of-flight ACC: Threshold Cerenkov ACC: Threshold Cerenkov(aerogel)Electron/photon ECL: CsI calorimeter ECL: CsI calorimeter Muon/K L KLM: Resistive plate KLM: Resistive platecounter/iron Charged tracking/vertexing 5-layer DSSD Si µstrip 5-layer DSSD Si µstrip 40 layers (He-isobutane) 40 layers (He-isobutane) Hadron identification tracker: dE/dx tracker: dE/dx DIRC imaging Cerenkov DIRC imaging CerenkovElectron/photon CsI calorimeter CsI calorimeter Muon/K L Instrumented flux return Instrumented flux return
96
96 PEP-II & BaBar L max = 1.12 X 10 33 cm – 2 s – 1 L dt = 371 fb – 1 @{ Υ (4S)+off(~10%)} (>3.7x10 8 B events) Charged tracking/vertexing 5-layer DSSD Si µstrip 5-layer DSSD Si µstrip 40 layers (He-isobutane) 40 layers (He-isobutane) Hadron identification tracker: dE/dx tracker: dE/dx DIRC imaging Cerenkov DIRC imaging CerenkovElectron/photon CsI calorimeter CsI calorimeter Muon/K L Instrumented flux return Instrumented flux return 11 nations, 80 institutes, 623 persons
97
97 e + source Ares RF cavity Belle detector World record: L = 1.6 x 10 34 /cm 2 /sec SCC RF(HER) ARES(LER) The KEKB Collider 8 x 3.5 GeV 22 mrad crossing angle ~1 km in diameter Mt. Tsukuba KEKB Belle since 1999
98
98 Belle detector K L detector 14/15 layer RPC+Fe Electromagnetic Calorimeter CsI(Tl) 16X 0 Aerogel Cherenkov Counter n = 1.015~1.030 Si Vertex Detector 4-layer DSSD TOF counter 3.5 GeV e + Central Drift Chamber momentum, dE/dx 50-layers + He/C 2 H 6 charged particle tracking K/ separation B vertex Muon / K L identification , 0 reconstruction e +-, K L identification 8.0 GeV e -
99
99 = 0.425 (Belle) 0.56 (BaBar) Principle of tCPV measurement CP-side 1.Fully reconstruct one B-meson which decays to CP eigenstate electron positron (4S) resonance B1B1 B2B2 ++ -- K S/L J/
100
100 = 0.425 (Belle) 0.56 (BaBar) Principle of tCPV measurement CP-side Flavor tag and vertex reconstruction 1.Fully reconstruct one B-meson which decays to CP eigenstate 2.Tag-side determines its flavor (effective efficiency = 30%) 3.Proper time ( t) is measured from decay-vertex difference ( z) electron positron (4S) resonance B1B1 B2B2 ++ -- K+K+ -- ++ -- K S/L J/ z ~ 200 m (Belle) B0B0 B0B0 _
101
101 b g s modes and their “ cleaness ” in SM taken from a review “CP violation” in PDG2005 (D.Kirkby, Y.Nir) pure tree b cud D CP 0 D CP Ks (Vcb*Vud)T + (Vub*Vcd)T 2 + ucd
102
102 Experimental Challenge B 0 J/ K S B0 KSB0 KS Tree Penguin We need 1) large number of BB pairs 2) additional background rejection Event Shape (Jet-like) (Spherical) Mbc Signal Likelihood
103
103 Signal Likelihood (LHR) projection Mbc projection LHR Mbc Clear separation between signal and background Clear separation between signal and background B 0 Ks Ks signal Ks signal
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.