Presentation is loading. Please wait.

Presentation is loading. Please wait.

Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril.

Similar presentations


Presentation on theme: "Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril."— Presentation transcript:

1 Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril 2006

2

3 LES PARAMÈTRES DE STOKES

4 Dérivation du vecteur champ magnétique Champ longitudinal: théorie de l'effet Zeeman + géométrie Champ transverse: méthode de "champ faible" polar. circulaire polar. linéaire

5 The photospheric magnetic field line ratio technique (pioneer Stenflo, 1973) (Keller et al., 1994, Grossmann-Doerth et al., 1996, Dominguez-Cerdeña et al., 2003, Lites & Socas Navarro, 2004)  1-2 kGauss field filling ~2% of space (fluxtubes, 100-300km structures) IR observations (direct access to the field strength) (Lin, 1995, Khomenko et al., 2003)  confirm the levels of field strength & filling factor  trend for a  strength in network and intranetwork (lower) 2-components inversions (SIR, MISMA) (Socas-Navarro & Lites, 2004, Sánchez-Almeida & Lites, 2000)  confirm kGauss and % filling f., but fail to confirm  strengths  25% of the pixels only are inverted (noise), only I and V full-Stokes analysis (i.e., not only I and V) (Khomenko et al., 2003, Lites, 2002)  'mixed polarities' in intranetwork Hanle effect (second solar spectrum)  turbulent 36-60 Gauss (Sr I 4607 Å: Faurobert et al., 2001, Bommier et al., 2005)  field strength PDF (Trujillo Bueno et al., 2004)

6 THEMIS spectropolarimetric data: profiles & Stokes parameters I,Q,U,V + UNNOFIT inversion 7 December 2003 NOAA 0517 15S-15W in 5 spectral windows: Fe I 6301.5/6302.5 Å Fe I 5250.2 Å Fe I 5576.1 Å Ti I 5565.6 Å Hydrogen H 

7 UNNOFIT Landolfi, M., Landi Degl'Innocenti, E., Arena, P., 1984, Solar Physics 93, 269 Unno-Rachkowsky analytical solution in a Milne-Eddington atmosphere Marquardt algorithm to reach the minimum  2 (Harvey et al., 1972, Auer et al., 1977)  Magneto-optical and damping effects (Landolfi & Landi Degl'Innocenti, 1982) typical INTRANETWORK low polarized pixel

8 UNNOFIT Present work: introduction of a 9 th fitted parameter: the magnetic filling factor   Skumanich & Lites (1987): I nm constant (average of the observation)  our work: same physical conditions (except the magnetic field) for I nm and I m I nm varies throughout the map (umbra, penumbra, plages, faculæ, quiet, etc...) 8 fitted parameters: 1 – the line strength  0 2 – the Zeeman splitting  H 3 – the Doppler width  D 4 – the damping parameter of the Voigt function  5 – one single parameter b describing the Milne-Eddington atmosphere 6 – the line central wavelength 7 & 8 – the field inclination and azimuth angles

9 UNNOFIT minimum of  per pixel for two varying parameters: – the magnetic field intensity – the magnetic filling factor full scale: the polarimetric sensitivity

10 UNNOFIT minimum of  per pixel for two varying parameters: – the magnetic field inclination – the magnetic field azimuth full scale: the polarimetric sensitivity

11 noise level measurement by wavelet filtering technique and determination of the standard deviation

12 histograms of the differences inverted-initial (UNNOFIT accuracy)  B =  200 Gauss  =  5°,  =  10°  B =  300 Gauss  =  10°,  =  15°

13 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 I intensity continuum  6302 Å image: 240x340 arcsec pixel: 0.45 arcsec

14 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 I image: 240x340 arcsec pixel: 0.45 arcsec intensity H  center = 6562.8 Å

15 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B // magnetic flux = 6302.5 Å Bommier, Rayrole, Eff-Darwich 2005, A&A 435, 1115

16 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec  filling factor = 6302.5 Å UNNOFIT inversion

17 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec  /B // filling factor & magnetic flux = 6302.5 Å UNNOFIT inversion

18 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B longitudinal & transverse magnetic field 1dash/5x5 pixels = 6302.5 Å UNNOFIT inversion

19 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B longitudinal & transverse magnetic field 1dash/5x5 pixels = 6301.5 Å UNNOFIT inversion

20 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B longitudinal & transverse magnetic field 1dash/5x5 pixels = 6301.5/6302.5 Å UNNOFIT inversion

21 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec compound H  and = 6302.5 Å images + filling factor 0.03 contours UNNOFIT inversion

22 Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec  inclination polar angle = 6302.5 Å UNNOFIT inversion

23 filling factor 3% 6302.5 Å h = 262 km 6301.5 Å h = 328 km

24 6302.5 Å h = 262 km +/- vertical field homogeneous +/- horizontal field turbulent

25 6301.5 Å h = 328 km +/- vertical field (more spreaded) homogeneous +/- horizontal field turbulent + weak field tail

26 histograms of the differences 6301-6302  coherence between the 2 lines vertical gradient – 6 Gauss/kmvertical gradient + 6 Gauss/km

27 reductio ad absurdum pure camera noise  flat histogram of the azimuth differences non-flat histogram of the azimuth differences  non-pure camera noise  the noise is (at least partly) solar INTRANETWORK turbulent field

28 Autocorrelation inclination angle  azimuth angle  slit 0.45" pixels correlation  YES  time 4.6s steps correlation  NO  fixed slit at disk center (quiet region) 12 June 2005 Fe I 6302.5 observations correlation length: 0.5 pixel (160 km) correlation time: small

29 Autocorrelation inclination angle  azimuth angle  slit 0.45" pixels correlation  YES  time 4.6s steps correlation  SMALL  fixed slit at disk center (quiet region) 12 June 2005 Fe I 6301.5 observations correlation length: 0.5 pixel (160 km) correlation time: small

30 Conclusion NETWORK: 1.2 kG field magnetic filling factor  > 3% higher in the lane center homogeneous field +/- vertical, more spreaded at higher altitudes, vertical gradient: – 6 Gauss/km INTRANETWORK: 1.5 kG field magnetic filling factor  < 3% increasing with height turbulent field +/- horizontal more horizontal at higher altitudes vertical gradient: + 6 Gauss/km + a weak field tail at higher altitudes like IR ? the Hanle weak fields ? THEMIS versus

31 27 May 2005 NOAA 767

32 27 May 2005 NOAA 767

33 & SQUV+PCA Package

34 28 May 2005

35

36 29 May 2005

37

38

39 30 May 2005

40

41 31 May 2005

42

43 1 June 2005

44

45 J oint O bserving P rogram 178: 11 instruments sol & spatiaux pointent le même filament

46 DOT (Dutch Open Telescope) H  THÉMIS H  et SOHO-EIT Extreme-UV Imaging Telescope TRACE 171 Å DOT Continu DOT Ca ionisé raie H DST-Sac Peak (Dunn Solar Telescope) H  DPSM de la Tour solaire de Meudon H  ISOON-Sac Peak H 

47 DOT JOP178 6/10/2004 7/10/2004 8/10/2004 11 instruments 7/10/2004 ISOON THEMIS

48 6/10/2004 7/10/2004 field vector

49 8/10/2004 field vector

50 6/10/2004 7/10/2004 inclination

51 8/10/2004 inclination

52 continuum field vector + H  + contour filling factor 3% inclination 11 September 2005

53 continuum field vector + H  + contour filling factor 3% inclination 13 September 2005

54 HH field vector + H  + contour filling factor 3% inclination 12 September 2005

55 Conclusion MHD and the magnetic filling factor ? fluxtubes or not fluxtubes ? THEMIS SEMHD-ENS, 24 avril 2006


Download ppt "Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril."

Similar presentations


Ads by Google