Download presentation
Presentation is loading. Please wait.
Published byMagdalen Jackson Modified over 8 years ago
1
Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril 2006
3
LES PARAMÈTRES DE STOKES
4
Dérivation du vecteur champ magnétique Champ longitudinal: théorie de l'effet Zeeman + géométrie Champ transverse: méthode de "champ faible" polar. circulaire polar. linéaire
5
The photospheric magnetic field line ratio technique (pioneer Stenflo, 1973) (Keller et al., 1994, Grossmann-Doerth et al., 1996, Dominguez-Cerdeña et al., 2003, Lites & Socas Navarro, 2004) 1-2 kGauss field filling ~2% of space (fluxtubes, 100-300km structures) IR observations (direct access to the field strength) (Lin, 1995, Khomenko et al., 2003) confirm the levels of field strength & filling factor trend for a strength in network and intranetwork (lower) 2-components inversions (SIR, MISMA) (Socas-Navarro & Lites, 2004, Sánchez-Almeida & Lites, 2000) confirm kGauss and % filling f., but fail to confirm strengths 25% of the pixels only are inverted (noise), only I and V full-Stokes analysis (i.e., not only I and V) (Khomenko et al., 2003, Lites, 2002) 'mixed polarities' in intranetwork Hanle effect (second solar spectrum) turbulent 36-60 Gauss (Sr I 4607 Å: Faurobert et al., 2001, Bommier et al., 2005) field strength PDF (Trujillo Bueno et al., 2004)
6
THEMIS spectropolarimetric data: profiles & Stokes parameters I,Q,U,V + UNNOFIT inversion 7 December 2003 NOAA 0517 15S-15W in 5 spectral windows: Fe I 6301.5/6302.5 Å Fe I 5250.2 Å Fe I 5576.1 Å Ti I 5565.6 Å Hydrogen H
7
UNNOFIT Landolfi, M., Landi Degl'Innocenti, E., Arena, P., 1984, Solar Physics 93, 269 Unno-Rachkowsky analytical solution in a Milne-Eddington atmosphere Marquardt algorithm to reach the minimum 2 (Harvey et al., 1972, Auer et al., 1977) Magneto-optical and damping effects (Landolfi & Landi Degl'Innocenti, 1982) typical INTRANETWORK low polarized pixel
8
UNNOFIT Present work: introduction of a 9 th fitted parameter: the magnetic filling factor Skumanich & Lites (1987): I nm constant (average of the observation) our work: same physical conditions (except the magnetic field) for I nm and I m I nm varies throughout the map (umbra, penumbra, plages, faculæ, quiet, etc...) 8 fitted parameters: 1 – the line strength 0 2 – the Zeeman splitting H 3 – the Doppler width D 4 – the damping parameter of the Voigt function 5 – one single parameter b describing the Milne-Eddington atmosphere 6 – the line central wavelength 7 & 8 – the field inclination and azimuth angles
9
UNNOFIT minimum of per pixel for two varying parameters: – the magnetic field intensity – the magnetic filling factor full scale: the polarimetric sensitivity
10
UNNOFIT minimum of per pixel for two varying parameters: – the magnetic field inclination – the magnetic field azimuth full scale: the polarimetric sensitivity
11
noise level measurement by wavelet filtering technique and determination of the standard deviation
12
histograms of the differences inverted-initial (UNNOFIT accuracy) B = 200 Gauss = 5°, = 10° B = 300 Gauss = 10°, = 15°
13
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 I intensity continuum 6302 Å image: 240x340 arcsec pixel: 0.45 arcsec
14
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 I image: 240x340 arcsec pixel: 0.45 arcsec intensity H center = 6562.8 Å
15
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B // magnetic flux = 6302.5 Å Bommier, Rayrole, Eff-Darwich 2005, A&A 435, 1115
16
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec filling factor = 6302.5 Å UNNOFIT inversion
17
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec /B // filling factor & magnetic flux = 6302.5 Å UNNOFIT inversion
18
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B longitudinal & transverse magnetic field 1dash/5x5 pixels = 6302.5 Å UNNOFIT inversion
19
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B longitudinal & transverse magnetic field 1dash/5x5 pixels = 6301.5 Å UNNOFIT inversion
20
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec B longitudinal & transverse magnetic field 1dash/5x5 pixels = 6301.5/6302.5 Å UNNOFIT inversion
21
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec compound H and = 6302.5 Å images + filling factor 0.03 contours UNNOFIT inversion
22
Neutral Line NOAA region 0517 THEMIS-MTR 2003 december 7 9h08-14h06 image: 240x340 arcsec pixel: 0.45 arcsec inclination polar angle = 6302.5 Å UNNOFIT inversion
23
filling factor 3% 6302.5 Å h = 262 km 6301.5 Å h = 328 km
24
6302.5 Å h = 262 km +/- vertical field homogeneous +/- horizontal field turbulent
25
6301.5 Å h = 328 km +/- vertical field (more spreaded) homogeneous +/- horizontal field turbulent + weak field tail
26
histograms of the differences 6301-6302 coherence between the 2 lines vertical gradient – 6 Gauss/kmvertical gradient + 6 Gauss/km
27
reductio ad absurdum pure camera noise flat histogram of the azimuth differences non-flat histogram of the azimuth differences non-pure camera noise the noise is (at least partly) solar INTRANETWORK turbulent field
28
Autocorrelation inclination angle azimuth angle slit 0.45" pixels correlation YES time 4.6s steps correlation NO fixed slit at disk center (quiet region) 12 June 2005 Fe I 6302.5 observations correlation length: 0.5 pixel (160 km) correlation time: small
29
Autocorrelation inclination angle azimuth angle slit 0.45" pixels correlation YES time 4.6s steps correlation SMALL fixed slit at disk center (quiet region) 12 June 2005 Fe I 6301.5 observations correlation length: 0.5 pixel (160 km) correlation time: small
30
Conclusion NETWORK: 1.2 kG field magnetic filling factor > 3% higher in the lane center homogeneous field +/- vertical, more spreaded at higher altitudes, vertical gradient: – 6 Gauss/km INTRANETWORK: 1.5 kG field magnetic filling factor < 3% increasing with height turbulent field +/- horizontal more horizontal at higher altitudes vertical gradient: + 6 Gauss/km + a weak field tail at higher altitudes like IR ? the Hanle weak fields ? THEMIS versus
31
27 May 2005 NOAA 767
32
27 May 2005 NOAA 767
33
& SQUV+PCA Package
34
28 May 2005
36
29 May 2005
39
30 May 2005
41
31 May 2005
43
1 June 2005
45
J oint O bserving P rogram 178: 11 instruments sol & spatiaux pointent le même filament
46
DOT (Dutch Open Telescope) H THÉMIS H et SOHO-EIT Extreme-UV Imaging Telescope TRACE 171 Å DOT Continu DOT Ca ionisé raie H DST-Sac Peak (Dunn Solar Telescope) H DPSM de la Tour solaire de Meudon H ISOON-Sac Peak H
47
DOT JOP178 6/10/2004 7/10/2004 8/10/2004 11 instruments 7/10/2004 ISOON THEMIS
48
6/10/2004 7/10/2004 field vector
49
8/10/2004 field vector
50
6/10/2004 7/10/2004 inclination
51
8/10/2004 inclination
52
continuum field vector + H + contour filling factor 3% inclination 11 September 2005
53
continuum field vector + H + contour filling factor 3% inclination 13 September 2005
54
HH field vector + H + contour filling factor 3% inclination 12 September 2005
55
Conclusion MHD and the magnetic filling factor ? fluxtubes or not fluxtubes ? THEMIS SEMHD-ENS, 24 avril 2006
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.