Download presentation
Presentation is loading. Please wait.
Published bySharon Blankenship Modified over 8 years ago
1
Group 2: Securing the Use, Storage and Transport of Radiological and Strategic Nuclear Materials Kent Cole President and Chief Executive Officer NAC International v v
2
Working Group Scope Securing the Use, Storage and Transport of Radiological and Strategic Nuclear Materials at civilian facilities: Minimizing the civilian use of strategic nuclear materials, most significantly HEU, and removal for disposal / downblending Radioactive Source Security Used Nuclear Fuel Security (new topic for NIS-2016) Transportation Security (new topic for NIS-2016) The report acknowledges that industry has a vital, but limited role in nuclear material security because it is national governments that set policies, ratify treaties and set regulations related to the security of nuclear materials v v
3
Membership Sun Qin, China National Nuclear Corporation Rick Didsbury, Canadian Nuclear Laboratories Jean Michel Romary, AREVA Michel Pays, EDF Jack Edlow, Edlow International Matt Fox, INS Jong-Kyung Kim, KAERI Kwang-Seok Lee, KAERI Phumzile Tshelane, South African Nuclear Energy Corporation (NECSA) Kent Cole, NAC International (chair) v v
4
Material Security Basics Objective: Protect against unauthorized removal and malicious acts Functions: Deter, Detect, Delay, Respond and Security Management Security Level is based on a Graded Approach considering the material attractiveness and the threat For certain materials, elimination or minimization is a better objective with associated relocation of excess material to special purpose facilities for disposition. v v
5
HEU Minimization Program History HEU Minimization Program History The Reduced Enrichment of Research and Test Reactor (RERTR) program was first established in 1978 The Global Threat Reduction Initiative (GTRI) replaced RERTR in 2004 The Office of Material Management and Minimization (M3) replaced GTRI in January 2015. Source: U.S. National Academies of Science, Engineering and Medicine, “Reducing the Use of Highly Enriched Uranium in Civilian Research Reactors”, 2016 v v
6
Accomplishments Over the 2010-2016 Summit Period 23 HEU Fueled Reactors converted or shutdown 13 Countries eliminated all HEU (and separated Pu) 3 of 8 major reactors producing Mo-99 are now using LEU Targets; significant activity toward industry conversion to LEU Radioactive Source security significantly improved globally v v
7
Countries Eliminating All HEU Austria (2012) Brazil * Bulgaria Chile (2010) * Colombia Czech Republic (2013) * Denmark * Georgia (2015) * Greece Hungary (2013) * Slovenia Spain * Sweden * Switzerland (2015) Taiwan # Thailand * Turkey (2010) * Ukraine (2012) * Uzbekistan (2015) Vietnam (2013) * v v # Taiwan also included * Attending the 2016 NSS HEU eliminated during Summits period Iraq Jamaica (2015) Republic of Korea * Latvia Libya Mexico (2012) * Philippines * Portugal Romania * Serbia (2010)
8
Accomplishments in Reactor HEU to LEU Conversions 95 HEU fuel reactors converted or shutdown. 56 since GTRI began in 2004 23 since 2010 NSS 7 since last NSS 1 st Russian Domestic Reactor (ARGUS) conversion (2014) 1 st Chinese MNSR conversion (2016) Recent Conversions: WWR-K (Kazakhstan), SLOWPOKE (Jamaica) Significant international cooperation and funded programs for U-Mo LEU fuel development v v
9
Accomplishments in Mo-99 Production Nearly all Mo-99 production reactors run on LEU fuel Mo-99 producers have begun to use LEU targets OPAL, RA-3 and Safari already using LEU targets Conversion to LEU targets in process for most others Broad international support to move to LEU and unsubsidized production Several projects in various phases of development and licensing v v
10
Accomplishments in Clean-out of Strategic Nuclear Materials Uzbekistan, Jamaica and Switzerland are free of HEU and high purity Pu since the 2014 Summit Japan is removing a significant quantity of high purity Pu and HEU from the FCA facility in 2016 Removal projects underway in Kazakhstan and Canada Significant activity is planned prior to Return program closure over the next several years v v
11
Accomplishments in Radiological Source Security Unique challenge due to variety, location, use, transport, storage and their management when disused IAEA has done significant work to structure and advance its Sources Security program with member states Industry groups and NGO’s have embraced and included Source Security in their scope/mission Focus on responsible management of disused sources Significant increase globally in guidance and training v v
12
Accomplishments in Used Fuel Security Unique challenge is large amount (400,000 tons) Robust physical protection of nuclear facilities, enhanced since 9/1/2001 Responsible management of used nuclear fuel should also include tangible progress by States and Operators in siting, developing and operating long term disposal facilities to support the use of nuclear power v v
13
Accomplishments in Transportation Security Industry organizations interface to represents industry with IAEA and national regulators on radioactive material transportation matters Provides mechanism for lessons learned and best practices Numerous training course, tabletop exercises and field exercises (including road, rail and sea) which involve government, polices, special forces, regulators and industry v v
14
Conclusions & Recommendations (2014) 1.To continue to endeavor to fulfill the recommendations contained within the 2012 NIS statement. 2.To endeavor further to minimize the use of HEU through the conversion from HEU to LEU fuel in research reactors, where technically and economically feasible, and through the switch from HEU to LEU targets in radioisotope production, while assuring a continuous and stable supply of Mo- 99. 3.To foster the development of high density fuel both by enhancing the existing scientific coordination and by addressing in parallel the industrialization issues, at the worldwide level. 4.To readily share, within appropriate conditions, their experience and technologies regarding the minimization of use of HEU. 5.To continue to collaborate on international programs to research and develop new technologies that require neither HEU fuels for reactor operation nor HEU targets for radioisotope production. 6.To recognize the importance of States' roles for introducing institutional measures to promote the use of LEU-based technologies, including the implementation of appropriate financial and other incentives to encourage greater use of non-HEU based medical isotopes.
15
Conclusions & Recommendations (2014) 7.To endeavor to work with their governments and the medical isotope supply chain for the application and implementation of the HLG-MR’s policy recommendations 8.To engage with states and relevant organizations to ensure that there is a diversity of suppliers of 19.75% enriched uranium and a viable disposition route for LEU research and test reactor fuels after the end of the FRRSNFA. 9.To continue the development of technically and financially viable methods for reprocessing LEU fuels, or otherwise providing for their long term management and disposal. 10.To accept return of disused sources which they supplied, and to assist holders of those sources in making logistical and financial arrangements for their return. When return is (practically) not possible, safe and secure management as waste should be guaranteed. 11.To develop substitutes and more secure designs for particularly vulnerable or dispersible radioactive sources. 12.To continue to work with states, international organizations and NGOs to ensure that the management of materials of concern is done in practical, efficient and cost effective ways.
16
Conclusions & Recommendations (2016) 1.To endeavor to fulfill the recommendations contained within the 2016 NIS Joint Statement. 2.To continue to minimize stocks of HEU and to keep stockpiles of separated plutonium to the minimum level, both as consistent with national requirements and nuclear fuel cycle policy. 3.To continue to cooperate with government efforts to repatriate HEU stocks to their countries of origin. 4.To cooperate with government efforts to repatriate quantities of high purity plutonium currently held at research and testing facilities that no longer are required. 5.To continue to safely and securely manage inventories of used nuclear fuel in facilities that are robustly designed with multiple layers of physical protection and detection capability in accordance with national regulations, including implementing new regulations and requirements pursuant to emerging threats. 6.To continue to safely and securely transport radioactive materials in accordance with national and international regulations, including implementing new regulations and requirements pursuant to emerging threats.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.