Download presentation
Presentation is loading. Please wait.
Published byPatrick Nash Modified over 8 years ago
1
Spintronics in quantum wires Physics Department Korea University Seoul (Korea) Llorenç Serra home institution Physics Department, University of the Balearic Islands UIB and Institute of Interdisciplinary Physics and Complex systems IFISC, CSIC-UIB Palma de Mallorca (Spain)
2
Where is Mallorca island, Spain ?
3
The Balearic Islands University 14000 students 100 in Physics (5 years) Main campus in Palma, Mallorca island www.uib.es
4
Outline of the talk Spintronics: Introduction Giant magnetoresistance in multilayers The spin transistor Quantum wires with extended Rashba coupling Band structure and conductance modifications Spin textures Evanescent states Localized coupling: The Fano-Rashba effect Conductance anomalies In-plane magnetic fields
5
Spintronics Novel technology based on the manipulation of the electron spin Spin is ignored in conventional electronics Nobel prize in 2007: Albert Fert and Peter A. Grunberg Giant magneto resistance thin magnetic layers (nm) antiferromagnetic interlayer exchange coupling control with an applied magnetic field
8
GMR is the basis of the spin valves used in hard discs read heads
9
magnetic funnel junctions spintronics with molecules
10
Spintronics in semiconductors Multiband k.p Hamiltonians conduction band SO term Kane parameters Similarity to SO in relativistic QM [Winkler] Dirac equation Pauli SO coupling: The Rashba interaction
11
Spin-orbit coupling (Rashba) Interband couplingSpin precesion Rashba parameter can be tuned with electric gates Nitta et al. ‘97
12
The Datta-Das spin transistor advantages? Faster data manipulation Lower consumption Higher integration
13
the mismatch problem Difficult injection of spin currents
14
Quantum wires with extended Rashba coupling 2d quantum wires without Rashba Landauer’s conductance L. Serra, D. Sánchez, R. López Phys. Rev. B 72, 235309 (2005)
15
With only Rashba “precession term” With “Rashba intersubband coupling” (RIC) Moroz and Barnes, Governale and Zülicke, Valín-Rodríguez et al, …
16
With in-plane B fields Neglecting RIC Subband maxima and quasi-gaps: Streda and Seba Pershin et al Anomalous conductance steps: Nesteroff et al
17
No RIC full - structureless without RIC - collapse in odd plateaus RIC is very important even at perpendicular field lengths
18
- in-plane spin rotation with k - z-component accumulations - eigenstate at k g first band Spin textures
19
Evanescent states wavenumber transverse motion Propagating (real k) versus evanescent (complex k) modes Evanescent states are not physically realizable in the entire wire, only in restricted domains L. Serra, D. Sánchez, R. López Phys. Rev. B 76, 045339 (2007)
20
Usual case (separable) transverse modes wire bands
21
Evanescent modes with Rashba coupling?
22
The equation to solve Mathematical peculiarities: E given, not a linear eigenvalue problem k unknown, nonlinear k-eigenvalue problem If k complex, non Hermitian Usual computation strategy invalid if k complex
23
The evanescent mode dispersion diagrams
24
Analytic weak Argument: neglect interband coupling diagonal Hamiltonian Rashba wavenumber Independent of E
25
An illustrative application: The potential step energy The wave function Evanescent modes crucial for matching and flux conservation
26
Potential step: distributions p1 p2 reverts magnetization maximum density for x>0 (?)
27
Evanescent oscillations! Nontrivial k real parts y cut integrated
28
Above barrier transmission
29
Finite region (double interface) and current-induced spin polarization
30
Localized Rashba coupling: The Fano-Rashba effect A finite Rashba region Dips in conductance D. Sánchez, L. Serra Phys. Rev. B 74, 153313 (2006)
31
Quasibound states Density distribution (b)(c) Dips with asymmetric Fano profile
32
Sparse linear system Harwell library routine Schrödinger equation asymptotic equation Grid calculations The quantum transmitting boundary method
33
Systematics dip minimum ~ zero renormalized quasi-bound states Rashba interaction as a gate voltage gate voltage
34
Feshbach’s coupled channel model “potential well” “potential mixing”
35
solution by ansatz bound state outgoing wave retarded Green function asymptotic solution
36
Generalized Fano lineshape Fano parameter
37
Generalized Fano lineshape Kobayashi et al. ‘02 Rashba spin-orbit coupling yields complex q ’s without breaking time-reversal symmetry !!
38
Spin effects Change quantization axis
39
With in-plane magnetic fields D. Sánchez, L. Serra, M.-S. Choi Phys. Rev. B 77, 035315 (2008)
40
Summary Spintronics has provided technological breakthrough (GMR) and possibly more will come. Rashba spin-orbit coupling allows spin manipulation with electric fields Peculiar behavior of evanescent states. Conductance resonances with localized Rashba couplings Collaborators Rosa López (Mallorca) David Sánchez (Mallorca) Mahn-Soo Choi (Seoul) Thank you !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.