Download presentation
1
المحاضرة 4 التركيب البلوري-التماثل
6
Plane of symmetry Axis of symmetry
8
Center of Symmetry هي نقطة وهمية متوسطة في البلورة تتميز بأن أي وجهين أو حرفين أو زاويتين مجسمتين يتناظران عبرها. وقد توجدهذه العناصر مجتمعة في بلورة واحدة مثل بلورة الجبس .وقد يوجد بعض هذه العناصر مثل بلورة اكسينايت التي يوجد بها مركز تماثل فقط.وقد لايوجد أي من هذه العناصر كما في بلورة ثيوسلفات الكالسيوم المائي.
10
أن أهم مايميز الشبيكية البلورية هي عمليات التماثل التي بإجرائها يعود البناء البلوري لوضعها الأصلي وأهم عمليات التماثل هي عملية التماثل النقطية والتي يمكن تطبيقها عند نقطة معينة في الشبكية البلورية ومن أمثلتها:
11
أهم عمليات التماثل هي عمليات التماثل النقطية والتي يمكن تطبيقها عند نفطة معينة في الشبكية البلورية ومن أمثلتها: 1- عملية الانقلاب Inversion operation وتتم هذه العملية حول نقطة شبكية تسمى مركز الانقلاب بحيت يتحول المتجه T إلى T. Inversion operator
12
- عملية الانعكاس Mirror Reflections
13
3-عملية الدورانRotation
(60,90,120,180,360).ولاتوجد أي شبكية يمكنها أن تعود الى وضعها الاصلي باي عملية دوران اخرى ،فلا يوجد مثلاً محور تماثل خماسي أو سباعي التماثل للشبكية البلورية.
14
Then the operation of the 2-fold leaves two points
Symbol for 2-fold axis =180 n=2 2-fold rotation axis Then the operation of the 2-fold leaves two points Symbol for 3-fold axis =120 n=3 3-fold rotation axis
15
=90 n=4 4-fold rotation axis =60 n=6 6-fold rotation axis
16
4- عمليات دوران انقلابيةRoto-Inversion تتم بالدوران حول محور بزاوية 2π/n= أو مضاعفاتها.حيث nعدد صحيح يصف محور التماثل ويأخذ القيم المحددة1,2,3,4, 6ثم يتبعها انقلاب حول نقطة شبكية يمر بها المحورويعبر عن محاور الدوان الانقلابية بالارقام 1,2,3,4,6
17
Notation for representing left and right handed objects
To start with we use the notation as described below. (Occasionally deviating from this as well!). Ultimately, we will turn to ‘International Tables of Crystallography’ symbols in b/w. +R R +L L
18
Translation The translation symmetry operator (t) moves an point or an object by a displacement t or a distance t. A periodic array of points or objects is said to posses translational symmetry. Translational symmetry could be in 2D or 3D (or in general nD). If we have translational symmetry in a pattern then instead of describing the entire pattern we can describe the ‘repeat unit’ and the translation vector(s). t t
19
Mirror and Inversion Inversion operator
With note on left and right handed objects The left hand of a human being cannot be superimposed on the right hand by mere translations and rotations The left hand is related to the right hand by a mirror symmetry operation (m) The right hand is called the enantiomorphic form of the left hand Another operator which takes objects to enantiomorphic forms is the inversion operator (i) (in the figure to the right below- between the two hands (in the mid-plane) at the centre is an inversion operator)` m Inversion operator
20
Rotation Axis Rotation axis rotates a general point (and hence entire space) around the axis by a certain angle On repeated operation (rotation) the ‘starting’ point leaves a set of ‘identity-points*’ before coming into coincidence with itself. As we are interested mainly with crystals, we are interested in those rotations axes which are compatible with translational symmetry → these are the (1), 2, 3, 4, 6 – fold axis. If an object come into self-coincidence through smallest non-zero rotation angle of then it is said to have an n-fold rotation axis where: The rotations compatible with translational symmetry are (1, 2, 3, 4, 6) Click here for proof Crystals can only have 1, 2, 3, 4 or 6 fold symmetry * explained in an upcoming slide
21
Then the operation of the 2-fold leaves two points
Symbol for 2-fold axis =180 n=2 2-fold rotation axis Then the operation of the 2-fold leaves two points Symbol for 3-fold axis =120 n=3 3-fold rotation axis
22
=90 n=4 4-fold rotation axis =60 n=6 6-fold rotation axis
23
Identity Points/Objects
If we start with a general point, then the operation of symmetry operator(s) will leave a (finite) set of points. These symmetrically related set of points are called identity points. An extension of the concept of Identity points is to use identity objects which can show left or right handedness. Some examples are shown below. 4-fold leaves 4 identity points Alternate diagram 4mm Right Handed 4mm Left Handed Right Handed 4mm point group leaves 8 identity points: 4 left handed (orange circle) and 4 right handed (green circle) Left Handed
24
Compound Symmetry Operators
Translation, mirror, inversion & rotation are simple symmetry operators which we had considered Roto-inversion and Roto-reflection are compound symmetry operators which do not involve translation → both these take left handed objects to right handed form For generating point groups (to be considered later) one of the two operators is sufficient and hence we will consider roto-inversion only in future. Glide reflection and Screw are compound symmetry operators involving translation → Only Glide reflection takes left handed objects to right handed form It is important to note in these operations the compound operator acts before leaving a identity-point (i.e. Roto-inversion is NOT rotation followed by a inversion). In some cases these compound operators can be broken down into a combination of two operators. In a combination (unlike a compound) the individual operators express themselves fully – i.e. the first operator acts first and then the second acts on the result of the first operation.
25
Roto-inversion operations
A roto-inversion operator rotates a point/object and then inverts it (inversion operation) in one go. A left handed object will be taken to its right handed form by the operation. We will only consider 1,2,3,4,6 - fold rotations (crystallographic) as a part of the roto-inversion operation. Roto-inversion operations Compatible with translational symmetry
26
Screw Axis A screw (axis) operator rotates a point/object and then moves it a fraction of the repeat distance in one go. The faction which the screw axes move is called the pitch of the screw. We will only consider (1, 2, 3, 4, 6) - fold rotations (crystallographic) as a part of the screw axes. The screw axes to be considered are: 21 31 , 32 41 , 42 , 43 61 , 62 , 63 , 64 , 65 The normal and screw axis both give the same effect on the external symmetry of the crystal
27
The 32 axis produces a rotation of 120 along with a translation of 2/3.
The set of points generated are: (0,0) (120,2/3) (240,4/3=1/3) (360,6/3=2)… This is equivalent to a left handed screw (LHS) of pitch 1/3
28
The 43 axis is a RHS with a pitch of 3/4
The effect of 43 axis can be thought of as a LHS with a pitch of 1/4
29
The 42 axis generates the following set of points: (0,0) (90,1/2) (180,2/2=1) (270,3/2=1/2) (360,4/2=2) The grey arrowhead maps the (270,3/2) point to (270,1/2) → to keep points within unit cell
31
الشبكية الفراغية ترتيب عدد لانهائي من النقط في الفراغ بحيث يكون لكل نقطة نفس الجيران فأنها تكون شبكية فراغية لكل نقطة فيها نفس عدد الجيران على نفس الابعاد والاتجاهات.أي أنها أصغر جزء مرتب من ذرات متماسكة تماثل تماماً البلورة الكبرى التي يتكون منها الجسم. ويمكن تمثيل الشبكية البلورية بالمتجهات a,b,c
34
وقد صنف العالم برافييه الفرنسي كل احتمالات ترتيب الذرات داخل الشبكية البلورية فوجد إنها يمكن أن تمثل اربعة عشر احتمالا لطول a,b,c.وتبعاً للزوايا التي تميل بها ,, على الاحداثيات x,y,zعلى الترتيب.(أي اربعة عشرة طريقة يمكن بواسطتها ترتيب أي عدد من النقط بحيث تستوفي شروط تكوين الشبكية لكل طريقة من هذه الطرق تحدد وحدة الخلية عندما تتكرر هذه الوحدة في الاتجاهات الفراغية الثلاثه لنحصل على الجسم البلوري الكامل ).
54
And now for something completely different . . .
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.