Presentation is loading. Please wait.

Presentation is loading. Please wait.

BRACHIAL PLEXUS INJURIES

Similar presentations


Presentation on theme: "BRACHIAL PLEXUS INJURIES"— Presentation transcript:

1 BRACHIAL PLEXUS INJURIES
Brachial plexus is anastomosing nerves supplied by the C5, C6,C7,C8 and T1 nerves Prefixed brachial plexus occur when contributions comes from C4 Post fixed brachial plexus occur when contributions comes from T2 Brachial plexus injuries affects nerves that originates from the spinal cord behind the head and neck due to compression or traction on nerves, also called obstetric plexus injuries (OBPI)

2 The brachial plexus injuries occurs in the form of:
Incidence: 0.5 to 3.0 per 1000 live births 58-72% of cases are Erbs palsy Ipsilateral diaphragm is involved in 5% of Erbs palsy cases Horner syndrome via T1 sympathetic injuries occur in 1l3 of total brachial plexus palsies Bilateral injury in 8-23% Traumatic lesions associated with brachial plexus injury: fractured clavicle, fractured humerus, subluxation of clavicle. Pathogenesis: The brachial plexus injuries occurs in the form of: 1- Avulsion: the most sever type, the nerves are torn from the spine 2- Rupture: Nerves are torn but not at spinal attachment 3- Neuroma, Nerves are trying to heal itself but scar tissue grow and make compression on injured nerve that will reduce conduction signals to muscles. 4- Neuropraxia: Nerves are damaged but not torn , Most common type of brachial plexus injuries

3 Causes: Most neonatal BPI occur in birthing process. Risk factors also referred to as OBPI include the following: Large birth weight Breech presentation Maternal diabetes Multiparity Second stage of labor that lasts more than 60 minutes Assisted delivery (use of forceps, vacuum extraction Previous child with OBPI Intrauterine Torticollis Shoulder dystocia Other less common causes: Neoplasm Intrauterine compression Humeral osteomyelitis

4 Common Types of nerve injuries: Neuropraxia:
Charactrized by conduction block Continuity of all structures No wallerian degeneration Complete recovery is evident in 3 to 6 weeks After simple crush injury function may return within days At site of injury , conduction block, with normal conduction distally Axonotmesis: It is more sever injury, with disruption of axons& surrounding endoneurial sheaths. Perineurium and epineurium remain intact Wallerian degeneration occurs After axontemesis, conduction velocity remain for distally up to 7 days. Recovery is good but require many months

5 Prognosis: The site and type of injury determine prognosis
Most of patients with neuropraxia recover spontaneously with % return of function Severity and extent of lesion, provide clues to prognosis in first two months of life Residual long term deficits may include progressive bony deformities, muscle atrophy, joint contracture, weakness of shoulder girdle and Erb Engram (flexion elbow accompanied by adduction shoulder Difficulty in shoulder external rotation (combing hair, eating , oral hygiene

6 Kinds of brachial plexus Injuries
Erbs Palsy(C5,C6): Mechanism of injury: C5,C6_+ C7 roots are prone to injury in infant who born with shoulder dystocia which shoulder being depressed away from the neck while neck is laterally flexed away from shoulder Left arm is the typical waiter tip hand position. The arm is extended shoulder internally rotated and adducted forearm pronated wrist and fingers flexed. Biceps reflex is absent, grasp reflex preserved, Moro is abnormal Sensory deficits can be found Diaphragmatic paralysis can also be found. Klumpke s palsy (C8& T1): Mechanism of injury: C8, T1 nerves injury is only seen in association infant born with breech arms extended over their heads can cause injury to lower roots frequently bilateral injury

7 The arm is flexed shoulder is normal forearm supinated wrist , fingers are flaccid
Paralysis of triceps, wrist and fingers extensors and flexors muscles Horners syndrome consists of droopy eyelid and constricted pupil on the side of brachial plexus injury, which reflects injury to sympathetic nerve at C8&T1. Patient presents Claw hand due to paralysis in intrinsic hand muscles Sensory Loss on ulnar side of forearm and hand Complete Palsy: Mechanism of injury: Injury to the entire whole brachial plexus by pulling the infant from extended arm All nerves are involved in one way or other Horners syndrome is involved in both complete and Klumpkes type

8 Management Brachial Plexus Injuries
A- Electro diagnostic studies used in addition to physical evaluation and provide data on both severity and timing of injury, the initial study is performed 2-3 weeks after injury. B) CT myleography or MRI best performed after 2-3 months. C) Nerve Conduction Velocity (NCS): Study latency of musclucutanous, axillary nerves in erbs palsy In complete injuries: Motor , sensory NCS of median , ulnar and occasion radial nerves are performed. Sensory NCS are useful in detecting avulsion injury, if respiratory distress was noted at birth, ipsilateral phrenic nerve has to be tested Needle EMG is performed for muscles which innervated by affected nerve In erb palsy : muscles like supraspinatous, infraspinatus, biceps, triceps and deltoid In complete Injury: all previous muscles in addition to those above level of injury and interossei and opponens pollicis

9 E) Physical evaluation:
D) Radiographs: A-P view for both shoulders demonstrate smaller, elevated scapula on the affected side, elongation of acromion and coracoid process, gelnoid cavity become more smaller and shallower than normal side E) Physical evaluation: Formal goniometry used for passive and active ROM Standrized Muscle testing is diffcult in early childhood but is nessary by simple observation of musle contraction against gravity Testing sensation, posture and functional activity is performed through clnical observation Assessment with infant undressied, movement is tested by observation Note any broken bone, senation, muscle strength developmental milestone Asymetrical position of upper limb, winging scapule. Sensory test using pin ADL activities, Muscle Tone and Round Measurement Muscle test: is performed in the form of gross functional scale : 15 separated movements are tested from shoulder to hand: shoulder flexion, adduction, abduction, internal, external rotation, elbow flexion and extension, wrist flexion, extension, fingers flexion, extension, thumb flexion and extension

10 Mallet system: Treatment techniques should include the following:
Assess the function of the shoulder Grade I: indicate stiff shoulder or flail arm Grade II : active abduction 30 degrees or less Grade III: active abduction 30 – 90, external rotation 20 degrees or less Grade IV: active abduction 90, external rotation more than 20 degrees, hand can be placed behind back , to mouth without abduction of arm Grade V: Clinically normal shoulder Treatment techniques should include the following: Surgery necessary for sever cases which do not show recovery of neurological functions by 4- 6 months of age Primary surgeries are usually performed 5-12 months after injury nerves does not show any recovery Secondary surgeries where there is any skeletal deformities

11 Physical Therapy treatment:
Goals of Physiotherapy Minimizing bony deformities and joint contractures associated with OBPP and optimizing functional outcome Enhance recovery of motor function Provide environmental motor condition Resume functions as soon as neural regeneration has taken place Achieves the goals through: 1- preventing soft tissue contracture and skeletal deformity 2- Immobilizing limb gently across the abdomens for first week 3-Start PROM for all joints 4-Splinting: Supportive wrist splint., scapular stabilization to reduce scapular winging

12 Physical Therapy program:
1- Gentle PROM for all joint in affected limb 2- Passive and active stretching , Flexibility , Mobilization EXCS, Myofacial release techniques to inhabit soft tissue contractures 3- Active strengthening EXCS initially facilitated through age appropriate developmental activities then standardized strengthening Excs are used with avoiding substituate movements 4-Early and maintain stretching of internal rotation of shoulder internal rotators muscles will prevent shoulder dislocation by shoulder external rotation , adduction beside the chest and elbow flexion 90 will provide maximum stretching to shoulder internal rotators specifically( Subscapularis muscle) and anterior shoulder capsule, stabilization of scapuale should be while streching shoulder girdle to maintain scapulohumeral rhythm, Avoid aggressive forced supination of forearm which lead to dislocation of radial head due to elbow flexors contractures 5-Static and dynamic splinting of the arm as resting hand, wrist , supinator and elbow splint 6-Air splints used to maintain stability for elbow extension 7-Taping techniques used for control scapular instability, improve shoulder mobility 8- Tactile Stimulation to affected limb using various texture materials, vibration and massage will improve sensory awareness

13 9-Joint compression and weight bearing will stimulate proprioception and contribute in co contraction of muscle 10- Bilateral motor planning activities 11- Pool Therapy 12-Therapeutic Electrical Stimulation applied to muscle at low sensory stimulation level to prevent disuse atrophy and improve blood flow 13- Home exercises program include safe handling ,positioning , gentle stretching, sensory awareness, In older children with persistence disability, instructions are given for more independence, ADL activities Recommendations: 1- Must be trained with in the first month in spite there is no activity of deinervated muscles 2- Early train for prevention of soft tissue contracture 3- Age developmental activities to enhance reaching , grasping, manipulation 4- Improving sensory awareness by using specific games

14

15

16

17


Download ppt "BRACHIAL PLEXUS INJURIES"

Similar presentations


Ads by Google