Download presentation
Presentation is loading. Please wait.
Published byAubrey McDonald Modified over 8 years ago
1
O RGANIC L IGHT -E MITTING D IODE (OLED) PRESENTED BY: 130450112003 BIND LALSHA SHRI S’AD VIDYA MANDAL INSTITUTE OF TECHNOLOGY
2
O RGANIC L IGHT -E MITTING D IODE Emissive organic material, that when supplied with an electrical current, produces a superior full-color flat panel display. OLED’s can provide brighter, crisper displays on electronic devices and it uses less power than conventional light-emitting diodes or liquid crystal displays.
3
H ISTORY First developed in the early 1950’s in France by applying a high-voltage alternating current field to crystalline thin films of acridine orange and quinacrine The first diode device was invented at Eastman Kodak in the 1980’s by Dr. Ching Tang and Steven Van Slyke Today OLED is used in television screens, computer displays, portable system screens, advertising, information and indication Also used in light sources for general space illumination, and large-area light-emitting elements
4
H OW I T W ORKS ? An OLED is made by placing a series of organic thin films between two conductors. As soon as electrical current is applied, a bright light is emitted. OLED displays operate on the attraction between positively and negatively charged particles.
5
H OW OLED’ S ARE MADE Three ways to manufacture Vacuum deposition Organic vapor phase deposition Inkjet printing (Best)
6
T ODAY ’ S U SES Small electronic screens Motorola, Samsung, Sony Ericsson Cameras Keyboads TVs and Monitors
7
T HE F UTURE FOR OLED T ECHNOLOGY OLED’s can be printed onto flexible substrates and this allows for new innovations such as roll-up displays and displays embedded in fabrics Green technology- OLED screens turned “off” will consumer no power at all and show true black while LCD screens can not Cell phone prototypes by Motorola, Samsung, and Sony Ericsson have used OLED’ s unique characteristics for flexible and bendable screens
8
T HE F UTURE FOR OLED T ECHNOLOGY Recently, the Japanese government proclaimed that it was fully supporting Sony, Toshiba, Sharp, Matsushita Electric and some other companies in joint research of OLED TV Panels An agency set up for encouraging research, The New Energy and Industrial Technology Development Organization, or NEDO, says they are backing some companies development of a 40-inch OLED display to be complete sometime around 2015 Samsung super-thin 31” OLED screen was launched in 2008
9
A DVANTAGES OLED substrates can be plastic rather than glass Easier to produce and can be made into larger sizes Brighter than LEDs because the organic layers are much thinner and can be multi-layered Do not require backlighting like LCDs - LCDs work by selectively blocking areas of the backlight to make the images that you see, while OLEDs generate light themselves Consume much less power than LCDs - This is especially important for battery-operated devices such as cell phones Have large fields of view, about 170 degrees
10
D ISADVANTAGES Organic materials have a shorter lifetime than LCD and plasma screens Intrusion of water can destroy the organic materials -Compensated by complex sealing processes -Complex sealing processes make product less flexible Manufacturing processes are EXPENSIVE!
11
THANK YOU.....
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.