Presentation is loading. Please wait.

Presentation is loading. Please wait.

George Mason University Data Flow Modeling of Combinational Logic ECE 545 Lecture 5.

Similar presentations


Presentation on theme: "George Mason University Data Flow Modeling of Combinational Logic ECE 545 Lecture 5."— Presentation transcript:

1 George Mason University Data Flow Modeling of Combinational Logic ECE 545 Lecture 5

2 2 Required reading P. Chu, RTL Hardware Design using VHDL Chapter 4, Concurrent Signal Assignment Statements of VHDL

3 3ECE 448 – FPGA and ASIC Design with VHDL Dataflow VHDL Design Style

4 4 VHDL Design Styles Components and interconnects structural VHDL Design Styles dataflow Concurrent statements behavioral (sequential) Registers State machines Instruction decoders Sequential statements Subset most suitable for synthesis Testbenches

5 5 Synthesizable VHDL Dataflow VHDL Design Style VHDL code synthesizable VHDL code synthesizable Dataflow VHDL Design Style

6 6 Register Transfer Level (RTL) Design Description Combinational Logic Combinational Logic Registers … Today’s Topic

7 7 Data-Flow VHDL concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Concurrent Statements

8 Data-flow VHDL concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements

9 9 Data-flow VHDL: Example x y cin s cout

10 10 Data-flow VHDL: Example (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY fulladd IS PORT ( x : IN STD_LOGIC ; y : IN STD_LOGIC ; cin: IN STD_LOGIC ; s : OUT STD_LOGIC ; cout: OUT STD_LOGIC ) ; END fulladd ;

11 11 Data-flow VHDL: Example (2) ARCHITECTURE dataflow OF fulladd IS BEGIN s <= x XOR y XOR cin ; cout <= (x AND y) OR (cin AND x) OR (cin AND y) ; END dataflow ;

12 12 Logic Operators Logic operators Logic operators precedence and or nand nor xor not xnor not and or nand nor xor xnor Highest Lowest only in VHDL-93

13 13 Wanted: y = ab + cd Incorrect y <= a and b or c and d ; equivalent to y <= ((a and b) or c) and d ; equivalent to y = (ab + c)d Correct y <= (a and b) or (c and d) ; No Implied Precedence

14 RTL Hardware DesignChapter 414 E.g., status <= '1'; even <= (p1 and p2) or (p3 and p4); arith_out <= a + b + c - 1; Implementation of last statement

15 RTL Hardware DesignChapter 415 Signal assignment statement with a closed feedback loop a signal appears in both sides of a concurrent assignment statement E.g., q <= ((not q) and (not en)) or (d and en); Syntactically correct Form a closed feedback loop Should be avoided

16 16 Data-flow VHDL concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements

17 17 Conditional concurrent signal assignment target_signal <= value1 when condition1 else value2 when condition2 else... valueN-1 when conditionN-1 else valueN; When - Else

18 18 Most often implied structure target_signal <= value1 when condition1 else value2 when condition2 else... valueN-1 when conditionN-1 else valueN; When - Else.… Value N Value N-1 Condition N-1 Condition 2 Condition 1 Value 2 Value 1 Target Signal … 0101 0101 0101

19 RTL Hardware DesignChapter 419 2-to-1 “abstract” mux sel has a data type of boolean If sel is true, the input from “T” port is connected to output. If sel is false, the input from “F” port is connected to output.

20 RTL Hardware DesignChapter 420

21 RTL Hardware DesignChapter 421

22 RTL Hardware DesignChapter 422

23 RTL Hardware DesignChapter 423 E.g.,

24 RTL Hardware DesignChapter 424 E.g.,

25 RTL Hardware DesignChapter 425

26 RTL Hardware DesignChapter 426 E.g.,

27 27 Operators Relational operators Logic and relational operators precedence = /= >= not = /= >= and or nand nor xor xnor Highest Lowest

28 28 compare a = bc Incorrect … when a = b and c else … equivalent to … when (a = b) and c else … Correct … when a = (b and c) else … Priority of logic and relational operators

29 29 VHDL operators

30 30 Data-flow VHDL concurrent signal assignment (  ) conditional concurrent signal assignment (when-else) selected concurrent signal assignment (with-select-when) generate scheme for equations (for-generate) Major instructions Concurrent statements

31 31 Selected concurrent signal assignment with choice_expression select target_signal <= expression1 when choices_1, expression2 when choices_2,... expressionN when choices_N; With –Select-When

32 32 Most Often Implied Structure with choice_expression select target_signal <= expression1 when choices_1, expression2 when choices_2,... expressionN when choices_N; With –Select-When choices_1 choices_2 choices_N expression1 target_signal choice expression expression2 expressionN

33 33 Allowed formats of choices_k WHEN value WHEN value_1 | value_2 |.... | value N WHEN OTHERS

34 34 Allowed formats of choice_k - example WITH sel SELECT y <= a WHEN "000", c WHEN "001" | "111", d WHEN OTHERS;

35 RTL Hardware DesignChapter 435 Syntax Simplified syntax: with select_expression select signal_name <= value_expr_1 when choice_1, value_expr_2 when choice_2, value_expr_3 when choice_3,... value_expr_n when choice_n;

36 RTL Hardware DesignChapter 436 select_expression –Discrete type or 1-D array –With finite possible values choice_i –A value of the data type Choices must be –mutually exclusive –all inclusive –others can be used as last choice_i

37 RTL Hardware DesignChapter 437 E.g., 4-to-1 mux

38 RTL Hardware DesignChapter 438 Can “11” be used to replace others?

39 RTL Hardware DesignChapter 439 E.g., 2-to-2 2 binary decoder

40 RTL Hardware DesignChapter 440 E.g., 4-to-2 priority encoder

41 RTL Hardware DesignChapter 441 Can we use ‘-’?

42 RTL Hardware DesignChapter 442 E.g., simple ALU

43 RTL Hardware DesignChapter 443 E.g., Truth table

44 RTL Hardware DesignChapter 444 Conceptual implementation Achieved by a multiplexing circuit Abstract (k+1)-to-1 multiplexer –sel is with a data type of (k+1) values: c0, c1, c2,..., ck

45 RTL Hardware DesignChapter 445 –select_expression is with a data type of 5 values: c0, c1, c2, c3, c4

46 RTL Hardware DesignChapter 446

47 RTL Hardware DesignChapter 447 E.g.,

48 RTL Hardware DesignChapter 448 3. Conditional vs. selected signal assignment Conversion between conditional vs. selected signal assignment Comparison

49 RTL Hardware DesignChapter 449 From selected assignment to conditional assignment

50 RTL Hardware DesignChapter 450 From conditional assignment to selected assignment

51 RTL Hardware DesignChapter 451 Comparison Selected signal assignment: –good match for a circuit described by a functional table –E.g., binary decoder, multiplexer –Less effective when an input pattern is given a preferential treatment

52 RTL Hardware DesignChapter 452 Conditional signal assignment: –good match for a circuit a circuit that needs to give preferential treatment for certain conditions or to prioritize the operations –E.g., priority encoder –Can handle complicated conditions. e.g.,

53 RTL Hardware DesignChapter 453 –May “over-specify” for a functional table based circuit. –E.g., mux

54 54 MLU Example

55 55 MLU Block Diagram B A NEG_A NEG_B IN0 IN1 IN2 IN3 OUTPUT SEL1 SEL0 MUX_4_1 L0L1 NEG_Y Y Y1 A1 B1 MUX_0 MUX_1 MUX_2 MUX_3 0101 0101 0101

56 56 MLU: Entity Declaration LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY mlu IS PORT( NEG_A : IN STD_LOGIC; NEG_B : IN STD_LOGIC; NEG_Y : IN STD_LOGIC; A : IN STD_LOGIC; B : IN STD_LOGIC; L1 : IN STD_LOGIC; L0 : IN STD_LOGIC; Y : OUT STD_LOGIC ); END mlu;

57 57 MLU: Architecture Declarative Section ARCHITECTURE mlu_dataflow OF mlu IS SIGNAL A1 : STD_LOGIC; SIGNAL B1 : STD_LOGIC; SIGNAL Y1 : STD_LOGIC; SIGNAL MUX_0 : STD_LOGIC; SIGNAL MUX_1 : STD_LOGIC; SIGNAL MUX_2 : STD_LOGIC; SIGNAL MUX_3 : STD_LOGIC; SIGNAL L: STD_LOGIC_VECTOR(1 DOWNTO 0);

58 58 MLU - Architecture Body BEGIN A1<= NOT A WHEN (NEG_A='1') ELSE A; B1<= NOT B WHEN (NEG_B='1') ELSE B; Y <= NOT Y1 WHEN (NEG_Y='1') ELSE Y1; MUX_0 <= A1 AND B1; MUX_1 <= A1 OR B1; MUX_2 <= A1 XOR B1; MUX_3 <= A1 XNOR B1; L <= L1 & L0; with (L) select Y1 <= MUX_0 WHEN "00", MUX_1 WHEN "01", MUX_2 WHEN "10", MUX_3 WHEN OTHERS; END mlu_dataflow;

59 ECE 448 – FPGA and ASIC Design with VHDL Modeling Common Combinational Logic Components Using Dataflow VHDL

60 60ECE 448 – FPGA and ASIC Design with VHDL Wires and Buses

61 61 Signals SIGNAL a : STD_LOGIC; SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0); wire a bus b 1 8

62 62 Merging wires and buses SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL b: STD_LOGIC_VECTOR(4 DOWNTO 0); SIGNAL c: STD_LOGIC; SIGNAL d: STD_LOGIC_VECTOR(9 DOWNTO 0); d <= a & b & c; 4 5 10 a b c d

63 63 Splitting buses SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL b: STD_LOGIC_VECTOR(4 DOWNTO 0); SIGNAL c: STD_LOGIC; SIGNAL d: STD_LOGIC_VECTOR(9 DOWNTO 0); a <= d(9 downto 6); b <= d(5 downto 1); c <= d(0); 4 5 10 a b c d

64 64ECE 448 – FPGA and ASIC Design with VHDL Fixed Shifters & Rotators

65 65 Fixed Shift in VHDL A(3) A(2) A(1) A(0) ‘0’A(3)A(2)A(1) A>>1 SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL AshiftR: STD_LOGIC_VECTOR(3 DOWNTO 0); AshiftR <= AshiftR A

66 66 Fixed Rotation in VHDL A(3) A(2) A(1) A(0) A(2)A(1)A(0)A(3) A<<<1 SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL ArotL: STD_LOGIC_VECTOR(3 DOWNTO 0); ArotL <= ArotL A

67 67ECE 448 – FPGA and ASIC Design with VHDL Buffers

68 68 (b) Equivalent circuit (c) Truth table x f e (a) A tri-state buffer 0 0 1 1 0 1 0 1 Z Z 0 1 f ex x f e = 0 e = 1 x f Tri-state Buffer

69 69 Four types of Tri-state Buffers

70 70 Tri-state Buffer – example (1) LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY tri_state IS PORT ( ena: IN STD_LOGIC; input: IN STD_LOGIC; output: OUT STD_LOGIC ); END tri_state;

71 71 Tri-state Buffer – example (2) ARCHITECTURE dataflow OF tri_state IS BEGIN output <= input WHEN (ena = ‘1’) ELSE ‘Z’; END dataflow;

72 72ECE 448 – FPGA and ASIC Design with VHDL Multiplexers

73 73 2-to-1 Multiplexer (a) Graphical symbol (b) Truth table 0 1 f s w 0 w 1 f s w 0 w 1 0 1

74 74 VHDL code for a 2-to-1 Multiplexer LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY mux2to1 IS PORT (w0, w1, s : INSTD_LOGIC ; f : OUTSTD_LOGIC ) ; END mux2to1 ; ARCHITECTURE dataflow OF mux2to1 IS BEGIN f <= w0 WHEN s = '0' ELSE w1 ; END dataflow ;

75 75 Cascade of two multiplexers s1 w 3 w 1 0 1 s2 w 2 0 1 y

76 76 VHDL code for a cascade of two multiplexers LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY mux_cascade IS PORT (w1, w2, w3: IN STD_LOGIC ; s1, s2 : IN STD_LOGIC ; f : OUTSTD_LOGIC ) ; END mux_cascade ; ARCHITECTURE dataflow OF mux2to1 IS BEGIN f <= w1 WHEN s1 = ‘1' ELSE w2 WHEN s2 = ‘1’ ELSE w3 ; END dataflow ;

77 77 f s 1 w 0 w 1 00 01 (b) Truth table w 0 w 1 s 0 w 2 w 3 10 11 0 0 1 1 1 0 1 fs 1 0 s 0 w 2 w 3 (a) Graphic symbol 4-to-1 Multiplexer

78 78 VHDL code for a 4-to-1 Multiplexer LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY mux4to1 IS PORT (w0, w1, w2, w3: IN STD_LOGIC ; s: IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; f: OUT STD_LOGIC ) ; END mux4to1 ; ARCHITECTURE dataflow OF mux4to1 IS BEGIN WITH s SELECT f <= w0 WHEN "00", w1 WHEN "01", w2 WHEN "10", w3 WHEN OTHERS ; END dataflow ;

79 79ECE 448 – FPGA and ASIC Design with VHDL Decoders

80 80 2-to-4 Decoder 0 0 1 1 1 0 1 y 3 w 1 0 w 0 xx 1 1 0 1 1 En 0 0 1 0 0 y 2 0 1 0 0 0 y 1 1 0 0 0 0 y 0 0 0 0 1 0 w 1 y 3 w 0 y 2 y 1 y 0 (a) Truth table(b) Graphical symbol

81 81 VHDL code for a 2-to-4 Decoder LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY dec2to4 IS PORT (w: IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; En : IN STD_LOGIC ; y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ; END dec2to4 ; ARCHITECTURE dataflow OF dec2to4 IS SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ; BEGIN Enw <= En & w ; WITH Enw SELECT y <= “0001" WHEN "100", "0010" WHEN "101", "0100" WHEN "110", “1000" WHEN "111", "0000" WHEN OTHERS ; END dataflow ;

82 82ECE 448 – FPGA and ASIC Design with VHDL Encoders

83 83 Priority Encoder w 0 w 3 y 0 y 1 d 0 0 1 0 1 0 w 0 y 1 d y 0 11 0 1 1 1 1 z 1 x x 0 x w 1 0 1 x 0 x w 2 0 0 1 0 x w 3 0 0 0 0 1 z w 1 w 2

84 84 VHDL code for a Priority Encoder LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY priority IS PORT (w: IN STD_LOGIC_VECTOR(3 DOWNTO 0) ; y: OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ; z: OUT STD_LOGIC ) ; END priority ; ARCHITECTURE dataflow OF priority IS BEGIN y <="11" WHEN w(3) = '1' ELSE "10" WHEN w(2) = '1' ELSE "01" WHEN w(1) = '1' ELSE "00" ; z <= '0' WHEN w = "0000" ELSE '1' ; END dataflow ;


Download ppt "George Mason University Data Flow Modeling of Combinational Logic ECE 545 Lecture 5."

Similar presentations


Ads by Google