Download presentation
Presentation is loading. Please wait.
Published byShauna McCormick Modified over 8 years ago
1
CVEN 5424 Environmental Organic Chemistry Lecture 4 – Vapor Pressure Estimation
2
Announcements Reading Chapter 4, Vapor pressure Problem sets PS 1 due today PS 2 out today Office hours – next week (because of travel) Monday 9-10 am Tuesday 11:30 am-1 pm Office hours – semester Tuesday 11:30 am-1:00 pm Wednesday 9-10 am
3
Announcements Room SEEC C326 (RASEI Fellows Conf Rm) – this week SEEC S298 – rest of the semester, starting Jan 26 Lectures lecture Tues Jan 26 no lecture Thur Jan 28 double up Tues Jan 26, 8:30 am or 11:30 am double up Tues Feb 2, 8:30 am or 11:30 am
4
Vapor Pressure
5
Clayperon I For the phase transition 1 2, 12 H is the change in molar enthalpy measures intermolecular attraction 12 V is the change in molar volume measures randomness Benoît Paul Émile Clapeyron 1799-1864
6
Vapor Pressure solid liquid gas 1 2 3
7
Vapor Pressure Solid-liquid 12 H = fus H fus H is large 12 V = fus V fus V is small fus H /T fus V is very large; so is dp/dT solid liquid gas 1 1
8
Vapor Pressure Liquid-gas 12 H = vap H vap H is large ( vap H > fus H) 12 V = vap V vap V is large ( vap V >> fus V) vap H /T vap V is small; so is dp/dT solid liquid gas 2 2
9
Vapor Pressure Solid-gas 12 H = sub H sub H is very large (= fus H + vap H) 12 V = sub V sub V is large ( fus V + vap V) ~ sub V sub H/T sub V is “medium”; so is dp/dT solid liquid gas 3 3
10
Vapor Pressure Hypothetical liquids –“subcooled liquid” –hypothetically –hypothetically not having to pay melting costs to get solid to vaporize –will be important for determining vaporization of organic compound from water solid liquid gas TmTm
11
Vapor Pressure Hypothetical liquids –“superheated liquid” –hypothetical –hypothetical vapor pressure of a liquid above its boiling point solid liquid gas 1 atm TbTb
12
Vapor Pressure Clayperon II Enthalpy breaking bonds in condensed phase essentially no bonds formed in vapor phase Entropy increase in randomness in gas phase bonding results in orientation in condensed phases
13
Vapor Pressure Clayperon II Enthalpy van der Waals varying electron distribution: dipole-induced dipole, dipole- dipole relevant for all compounds characteristic of apolar or nonpolar compounds major contributor to 12 H
14
Vapor Pressure Clayperon II Enthalpy monopolar electron donor OR electron acceptor character donors: ether (-C-O-C-), keto (>C=O) acceptors: aromatic ring with electronegative substituents minor contributor to 12 H; a few kJ mol -1
15
Vapor Pressure Clayperon II Enthalpy bipolar electron donor-acceptor, or hydrogen bonding, character hydroxyl (-OH), carboxyl (-COOH) amino (-NH 2 ) sulfhydryl (-SH) significant contributor to 12 H; 10-20 kJ mol -1 monopolar and bipolar = polar
16
Vapor Pressure Clayperon II Entropy solid liquid static in solid; some interactions in liquid liquid gas some orientation in liquid; none in gas molecular characteristics allows translation – all molecules allows rotation – non-symmetric molecules allows flexing – molecules with chains
17
Vapor Pressure alkane T b ( C) log p* (bar) vap,sub H (kJ mol -1 ) T vap,sub S (J mol -1 ) methane, CH 4 -164.02.458.625.6 ethane, C 2 H 6 -88.61.6115.724.8 propane, C 3 H 8 -42.10.9819.525.0 butane, C 4 H 10 -0.50.4023.225.3 pentane, C 5 H 12 36.1-0.1729.127.7 hexane, C 6 H 14 69.0-0.7030.125.2 heptane, C 7 H 16 98.4-1.2135.530.0 octane, C 8 H 18 125.7-1.7441.032.8 nonane, C 9 H 20 150.8-2.2442.732.0 decane, C 10 H 22 174.1-2.7642.530.0 hexadecane, C 16 H 34 287.0-5.7353.932.7
18
Vapor Pressure 25°C
19
Vapor Pressure
20
What explains the decrease in vapor pressure for alkanes of increasing chain length? A. hydrogen bonding increases with chain length B. van der Waals forces increase with chain length C. electron donor-acceptor (polar) forces increase with chain length D. increase in entropy increases with chain length E. both B and D
21
Vapor Pressure What explains the decrease in vapor pressure for alkanes of increasing chain length? A. hydrogen bonding increases with chain length B. van der Waals forces increase with chain length C. electron donor-acceptor (polar) forces increase with chain length D. increase in entropy increases with chain length E. both B and D
22
Vapor Pressure What explains the decrease in vapor pressure for alkanes of increasing chain length? A. hydrogen bonding increases with chain length B. van der Waals forces increase with chain length C. electron donor-acceptor (polar) forces increase with chain length D. increase in entropy increases with chain length E. both B and D entropy does increase with chain length, but an increase in entropy favors an increase in vapor pressure
23
Vapor Pressure compoundstructure T b ( C) vap H (T b ) (kJ mol -1 ) (D) benzene8030.80 chlorobenzene13236.51.54 1,2-dichlorobenzene18044.02.50 1,3-dichlorobenzene17344.11.72 1,4-dichlorobenzene17444.20 1,2,3-trichlorobenzene21947.41.64 1,2,4-trichlorobenzene21449.50.81 1,3,5-trichlorobenzene20850.30 1,2,3,4-tetrachlorobenzene25456.71.90 1,2,3,5-tetrachlorobenzene24651.10.65 1,2,4,5-tetrachlorobenzene24352.00 pentachlorobenzene27762.10.88 hexachlorobenzene32268.70
24
Vapor Pressure What is another name for this compound, 1,4- dichlorobenzene? A. chlorobenzene B. p-chlorobenzene C. p-dichlorobenzene D. p-dichlorobenzoic acid E. Paracide
25
Vapor Pressure What is another name for this compound, 1,4- dichlorobenzene? A. chlorobenzene B. p-chlorobenzene C. p-dichlorobenzene D. p-dichlorobenzoic acid E. Paracide
26
Vapor Pressure
30
What kind of interaction is responsible for the increase in boiling point and enthalpy of vaporization in the series of benzene, chlorobenzene, and o-dichlorobenzene? A. van der Waals B. polar (electron donor-acceptor) C. hydrogen bonding
31
Vapor Pressure What kind of interaction is responsible for the increase in boiling point and enthalpy of vaporization in the series of benzene, chlorobenzene, and o-dichlorobenzene? A. van der Waals B. polar (electron donor-acceptor) C. hydrogen bonding
32
Vapor Pressure Data Vapor pressure from data (e.g., CRC Handbook) ln p (bar) 1/T (K -1 ) higher T lower TmTm solid liquid subcooled liquid
33
ln p (bar) 1/T (K -1 ) TmTm p iL * vap H/R sub H/R p iL * p iS * sub H = vap H + fus H
35
Vapor Pressure Data Example determine the vapor pressure of tetrachloroethene at 25 C using vapor pressure data from the CRC* T m = -19 C = 254 K T b = 121 C = 394 K *or some other source of P-T data T ( C) p L,S (mm Hg) -20.6s1 13.810 40.140 61.3100 100.0400 120.8760
36
Vapor Pressure Data Example determine the vapor pressure of tetrachloroethene at 25 C using vapor pressure data from the CRC* T m = -19 C = 254 K T b = 121 C = 394 K *or some other source of P-T data T ( C) p L,S (mm Hg) -20.6s1 13.810 40.140 61.3100 100.0400 120.8760
37
Vapor Pressure Data Example determine the vapor pressure of tetrachloroethene at 25 C using vapor pressure data from the CRC* T m = -19 C = 254 K T b = 121 C = 394 K *or some other source of P-T data T ( C) p L,S (mm Hg) -20.6s1 13.810 40.140 61.3100 100.0400 120.8760
38
Example ln p vs. 1/T Vapor Pressure Data T (C) T (K) 1/T (1/K) ln p (bar) p (bar) p (mm Hg) 13.82870.00348-4.317620.013310 40.1313.30.00319-2.931330.053340 61.3334.50.00299-2.015040.1333100 373.20.00268-0.628740.5333400 120.83940.002540.0131121.0132760
39
Vapor Pressure Data Example enthalpy of vaporization
40
Vapor Pressure Data Example vapor pressure at 25 C
41
Vapor Pressure Data Example vapor pressure at 25 C
42
Vapor Pressure Data Example vapor pressure at 25 C
43
Vapor Pressure Estimation Estimating vapor pressure of a liquid – where we are headed:
44
Vapor Pressure Estimation Estimating vapor pressure of a solid – where we are headed:
45
Next Lecture Vapor Pressure Aqueous Solubility start reading Chapter 5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.