Presentation is loading. Please wait.

Presentation is loading. Please wait.

I-131 Patient Release Dose Calculation Principles & Recent Research Lynn McGuire, MS, DABMP Consultant Medical Physicist (ret) UAMS Department of Radiology.

Similar presentations


Presentation on theme: "I-131 Patient Release Dose Calculation Principles & Recent Research Lynn McGuire, MS, DABMP Consultant Medical Physicist (ret) UAMS Department of Radiology."— Presentation transcript:

1 I-131 Patient Release Dose Calculation Principles & Recent Research Lynn McGuire, MS, DABMP Consultant Medical Physicist (ret) UAMS Department of Radiology

2 Dose to others from an I-131 patient Dose calculation methods & fundamentals Physical principles, geometry and scenarios More realistic geometries per Young, et al publications

3 Dose calculation methods & fundamentals Source – Target Physical - T 1/2, decay scheme Geometry Scenarios –Time & distance –Phantoms Biology – kinetics, time course of activity

4 Isotope physical data T 1/2, decay scheme I-131: 8 da, 364 keV gamma, 80% emission. =.22 mrem/h/mCi @ 1m

5 Geometries Target Point 3D Source Point 2D – Line 3D (distributed, volume)

6 Point source geometry

7 Geometries Target Point 3D Source Point 2D – Line 3D (distributed, volume) Phantoms & patients –Gender –Age –Posture –Activity distribution Disease state

8 Dosimetry phantoms - early

9 ORNL stylized

10 UF/NCI

11

12

13 Exposure Scenarios –Time = Occ. Factor (OF or E) –distance –Phantoms

14 Exposure Scenarios –Time & distance –Phantoms

15 I-131 distribution

16

17

18

19 NOW we can do those pesky dose calcs…

20 Dosimetry First Principles Physical decay Physical + biological D(∞)= 34.6*D 0 *T p (34.6=24*1.44) D(∞)= 34.6*D 0 *T E (T E =Tp*Tb/(Tp+Tb)

21 Dosimetry First Principles (2) Physical + biological w/occup factor E NRC case, App U-2 D(∞)= 34.6*D 0 *T E *E D= 34.6*.22*33mCi*8da*1/4=500 mrem

22 Physical decay only, with E (occ factor) 34.6

23

24 Time-activity or Retention curve

25 MIRD dosimetry Teff

26

27 NUREG 1556 App U, eq B-5

28 Regulatory reqt.

29 NUREG-1556 assumes point target, source

30 Han et al publications

31

32

33

34 All pubs posted at elmmhp.wordpress.com

35 Han, et al publications PhD research UF UF/NCI phantom family MCNP code code for photon transport Dose as TEDE Develop s-factors for multiple scenarios Use NRC uptake& retention model Provides mSv/ (mR/h) values Suggested time restrictions

36 Han exposure scenarios Phantom – age/gender Orientation – Facing; side to side; holding (infants) Hyperthyroidism & cancer – activity distribution

37 (MCNP) Monte carlo

38 RPD paper

39 MP paper: S-factors, hyper & organ doses

40 8x-80x greater 2x-20x greater

41 Fraction of adult TEDE Tables 2 & 3, Han et al, JRP 2014 10 cm 100 cm 200 cm HyperDTCHyperDTCHyperDTC 1 yo.11E-21.8E-26.7E-210E-212E-2 5 yo7E-254E-279E-298E-2100E-2

42 Takeaways NRC point source method conservative Han et al -<1/2 NRC, implies thy ca discharge OK ~400 mCi -S-factors given for non standard or default cases -Dose with age -Distance: dose similar to point sources >1 m, < @ <1 m

43 Future refinements? REAL patient specific data – Biodistribution – SPECT/PET/CT Useful for more precise patient treatment/dose Necessary for patient release?


Download ppt "I-131 Patient Release Dose Calculation Principles & Recent Research Lynn McGuire, MS, DABMP Consultant Medical Physicist (ret) UAMS Department of Radiology."

Similar presentations


Ads by Google