Download presentation
Presentation is loading. Please wait.
Published byBarnard Bryan Modified over 8 years ago
1
Two Nonlinear Models for Time Series n David A. Dickey n North Carolina State University n (joint with S. Hwang – Bank of Korea)
2
Kinston Goldsboro
3
Model 1: Transfer Function Upstream: G t = log(Goldsboro flow) G t *: deviation from mean Downstream: K t = log(Kinston flow) Model: K t = 0 + 1 (G t-2 *) G t-1 *+ 2 (1 - (G t-2 *) )G t-2 *+ Z t (G t *) = exp( + G t *)/(1+exp( + G t *) ) Logistic 0 < (G t *) < 1 Straightforward nonlinear regression problem! Z t = 1 Z t-1 + 2 Z t-2 + 3 Z t-3 + 4 Z t-4 + e t
4
ANOVA Table SSE is 2.25 with 385 df, Corrected total SS is 366. Parameter Estimate Approx 95% CI beta0 7.5861 7.4143 7.7578 beta1 0.8933 0.6938 1.0929 beta2 0.5500 0.4211 0.6789 delta -0.1643 -0.5723 0.2437 gamma -0.4081 -0.6105 -0.2058 alpha1 1.3288 1.2291 1.4286 alpha2 -0.5278 -0.6945 -0.3610 alpha3 0.0320 -0.1366 0.2007 alpha4 0.1212 0.0182 0.2243
5
Lag 1 Dynamic Constant Dynamic Lag 2
6
AR(1) Case 1: | |<1 “stationary” normal limits for estimator. Case 2: =1 “random walk,” “unit root process” limit distributions non-standard
7
Model 2: =f(Y t-1 ) Can we span -1< <1 or 0< <1 ?? Can we span -1< <1 or 0< <1 ?? n Logistic »exp( Y) / (exp( Y) +1) »exp( Y t-1 ) / (exp( Y t-1 ) +1) n Hyperbolic tangent »2(Logistic)-1 »(exp( Y) -1) / (exp( Y) +1) »(exp( Y t-1 ) -1) / (exp( Y t-1 ) +1) n Related to “smooth transition” models (Tong, 1990) n Harder problem than transfer function! - Why??
8
Can make progress under H 0 : =0 [ (Y)= 0 ] Can make progress under H 0 : =0 [ (Y t-1 )= 0 ] n Estimates: Use Taylor’s series F n = derivative matrix, hyperbolic tangent model. Estimates of N(0,G ) Estimates of N(0,G -1 2 )
9
Example 1: = 0, = 1
10
Example 2: =3, =3
11
600 obs. =0, =1 SAS, PROC NLIN 600 obs. =0, =1 SAS @, PROC NLIN @ SAS is the registered trademark of SAS Institute, Cary, NC Approx 95% Parameter Estimate Confidence Limits A -0.4188 -0.8727 0.0351 B 1.0695 0.8091 1.3299 MU 0.0437 -0.0555 0.1429 (converged in 6 iterations) =3, =3 case did not even converge
12
Tong: Skeleton of Process * Recursion without the e’s * y t = (y t-1 ) y t-1 =0, =1 |y (y)|<|y| y (y) even function t
13
Usual path to normality: stationarity + ergodicity One of Tong’s conditions to show ergodicity: There exist K>0, 0< <1 such that from any y 0 the skeleton y t is bounded by |y 0 | K t Skeleton ratios y t /y 0 ( =0, =1) : Blue is y1 Green is y2 Etc.
14
Hyperbolic tangent case (increasing) Suppose (K, ) exist – eventually (T), must have K T <1. Let M=K T < 1 and B=M 1/T. Note M < B = M 1/T Pick y -1 with (y -1 )>B and y 0 = y -1 B -T > y -1 Note 1: y > y -1 (y)>B (monotonicity) so (y 0 ) > B Note 2: B t y 0 = y -1 B t-T > y -1 for t T (B t y 0 ) > B for t<=T Thus y 1 = y 0 (y 0 )>B y 0 > y -1, y 2 = y 1 (y 1 )>B 2 y 0 > y -1 etc. But y T > B T y 0 (=My 0 =K T y 0 ) is a contradiction!
15
Skeleton ratios y t /y 0 = 2.0, = 0.5 = -1.0, = -0.8
16
Where is “good” ( ) region? Symmetries: Generate hyperbolic tangent model with symmetric e t. Now use – and –e t s (Y t-1 ) = [exp( (-Y t-1 ))-1]/ [exp( (-Y t-1 ))+1] -Y t = (Y t-1 ) (-Y t-1 ) – e t Now –e t and e t have same distribution so ( ) in “good” region ( ) also in “good” region & distribution of - estimate is mirror image of estimate ( estimates are same). For (|Y t-1 |), symmetry is ( ) and (- ). (proper conf. int. coverage and good convergence rate)
17
Y t / = (Y t-1 ) Y t-1 / + e t / where (Y t-1 ) = [exp( (Y t-1 / ))-1]/ [exp( (Y t-1 / ))+1] can assume e~(0,1) and slope is --------------------------------------------------------------------- Hwang’s simulations on (-4,4)x(-4,4) suggest (for hyperbolic tangent) approximately 0< <3 and -4< <3-7 /3 along with their symmetric counterparts. -33 3 | | -4
18
Example 1: N.C. Weekly Soybean Prices (Prof. Nick Piggott) AR(1) using hyperbolic tangent Sum of Mean Source DF Squares Square Model 3 37652.0 12550.7 Error 895 37.2886 0.0417 Uncor Tot 898 37689.3 Parm Estimate Approximate 95% CI a 4.3006 2.1949 6.4063 mu 7.8189 6.8801 8.7578 b -1.2435 -1.9299 -0.5572
19
Example 2: Kinston log(flow) model 1:sinusoid & AR(2)
20
AR(2) lag 2 coefficient = product of roots Replace with -1< (Y t-2 )<1 Fitted Model Y t = log(flow) – 7.4 -.95S-.25C (sine-cos) Y t = 1.53Y t-1 + (Y t-2 ) Y t-2 + e t Parameter Estimate Approx 95% CI A -1.3267 -1.5837 -1.0698 B 0.0646 0.0120 0.1173 Mu 7.3838 7.1136 7.6540 S1b 0.9528 0.5856 1.3200 C1b 0.2498 -0.0606 0.5602 D 1.5278 1.4459 1.6097 Plug-in forecasts
21
Roots of Forecasts & 95% intervals from m 2 -1.53m- (Y t-2 ) 15,000 simulated futures --- plug in forecast --- simulation forecast
22
Thanks ! Questions ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.