Download presentation
Presentation is loading. Please wait.
Published byWendy Armstrong Modified over 8 years ago
1
Bioinformatics bits of Life Dr. Tony C Smith Department of Computer Science University of Waikato tcs@cs.waikato.ac.nz
2
Bioinformatics Tony C Smith The essence is prediction from context … My dog is very littl_ My dog is very littl_ ? We know that letters do not occur in English at random (e.g. ‘t’ is generally more common than ‘x’) We know that context changes the probability of a letter (e.g. ‘x’ is more common than ‘t’ after the sequence “I eat Weet-Bi_”) Predicting symbols is fundamental to a wide range of important applications (e.g. encryption, compression)
3
Bioinformatics Tony C Smith Prediction in bioinformatics Predicting the location of genes in DNA Predicting gene roles in an organism Predicting errors in a genetic transcription Predicting the function of proteins Predicting diseases from molecular samples Anything that involves “making a judgment”; a yes/no decision about whether some sample datum ‘does’ or ‘does not’ have some property.
4
Bioinformatics Tony C Smith Representation W e e t – B i x 0101011101100101011001010111010000101101 … … to the computer, everything is binary!
5
Bioinformatics Tony C Smith 0101011101100101011001010111010000101101 0101101100100111111011010011010000101101 A A C G T C A T T C G A T G A T T C G A Just as we can teach a computer to predict things about a sequence of letters in English prose, we can also teach it to predict things about a other sequences—like a genetic sequence
6
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggc gcggctacgttcatcccagcagcagcgattttaaaattaa cgcatcagactctcgtcgcgttcgtcgcctttattcacgcta atggacgacatcttttactacgacggcgcctacgcatcg cagcatacgacgcccagcatagtattttagaggcgagg acatcatcatatcgcagctacagcgcatcagacgcata cgacgacgactacgacgacactaacgacgatgttgcg cacccacaccagttatatagagacgaactcgcatcagc ttgcaatcggcgctacgcttcaaaatttattatattcccggc gcggctacgttcatcccagcagcagcgattttaaaattaa cgcatcagactctcgtcgcgttcgtcgcctttattcacgcta atggacgacatcttttactacgacggcgcctacgcatcg cagcatacgacgcccagcatagtattttagaggcgagg acatcatcatatcgcagctacagcgcatcagacgcata cgacgacgactacgacgacactaacgacgatgttgcg cacccacaccagttatatagagacgaactcgcatcagc
7
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcg cctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgc agctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagctgc aatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgccttt attcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagct acagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcg gcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattca cgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacag cgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgct acgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgcta atggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcat cagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgct tcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatgga cgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcaga cgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgcttcaa aatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgac atcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcat acgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgcttcaaaatttat tatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatctttt actacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacga cgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgcttcaaaatttattatatt cccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactac gacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacg actacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgttgcgcacccacaccagttatatagagacgaactc ttgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcg cctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgc agctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagctgc aatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgccttt attcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagct acagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcg gcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattca cgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacag cgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgct acgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgcta atggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcat cagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgct tcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatgga cgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcaga cgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgcttcaa aatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgac atcttttactacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcat acgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgcttcaaaatttat tatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatctttt actacgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacga cgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctacgcttcaaaatttattatatt cccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactac gacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacg actacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgttgcgcacccacaccagttatatagagacgaactc
8
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcg cagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagct gcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgc agcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgc aatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcag catacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaat cggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcat acgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcg gcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatac gacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggc gctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacga cgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgct acgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacg cccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctac gcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcc cagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgttgcgcacccacacc agttatatagagacgaactcttgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttacta cgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatag agacgaactcgcatcagctgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactac gacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatataga gacgaactcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacga cggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagaga cgaactcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacg gcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacg aactcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggc gcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaa ctcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgc ctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaact cgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcct acgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcg catcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctac gcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgca tcagtgttgcgcacccacaccagttatatagagacgaactc ttgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcg cagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagct gcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgc agcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgc aatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcag catacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaat cggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcat acgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcg gcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatac gacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggc gctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacga cgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgct acgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacg cccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgcaatcggcgctac gcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctacgcatcgcagcatacgacgcc cagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgcatcagtgttgcgcacccacacc agttatatagagacgaactcttgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttacta cgacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatag agacgaactcgcatcagctgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactac gacggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatataga gacgaactcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacga cggcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagaga cgaactcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacg gcgcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacg aactcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggc gcctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaa ctcgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgc ctacgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaact cgcatcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcct acgcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcg catcagtgcaatcggcgctacgcttcaaaatttattatattcccggcgcggctacgttcatcccagcagcagcgattttaaaattaacgcatcagactctcgtcgcgttcgtcgcctttattcacgctaatggacgacatcttttactacgacggcgcctac gcatcgcagcatacgacgcccagcatagtattttagaggcgaggacatcatcatatcgcagctacagcgcatcagacgcatacgacgacgactacgacgacactaacgacgatgttgcgcacccacaccagttatatagagacgaactcgca tcagtgttgcgcacccacaccagttatatagagacgaactc
9
Bioinformatics Tony C Smith A genetic prediction problem A gene encodes a protein It is a blueprint that provides biochemical instructions on how to construct a sequence of amino acids so as to make a working protein that will perform some function in the organism
10
Bioinformatics Tony C Smith A genetic prediction problem encoding region untranslated region transcription factor RNA
11
Bioinformatics Tony C Smith A genetic prediction problem untranslated region
12
Bioinformatics Tony C Smith A genetic prediction problem untranslated region ttgcaatcggcgctacgcttcaaaatttattatattcccggc
13
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggc What transcription factors bind to this gene? Where is the transcription factor binding site?
14
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggc It is like predicting a phrase in a sentence: Mary saw _______ with her binoculars.
15
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggc Clues:A binding site is often a short general pattern E.g. CCGATNATCGG
16
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggc Clues:The patterns are often reverse complements E.g.CCGATNATCGG GGCTANTAGCC
17
Bioinformatics Tony C Smith A genetic prediction problem ttgcaatcggcgctacgcttcaaaatttattatattcccggc Clues:Where there is one binding site, often there is another nearby.
18
Bioinformatics Tony C Smith A genetic prediction problem All of these properties are the kinds of things for which computer science has developed algorithms and data structures, and therefore it is exactly the kind of problem computer scientists should be able to solve … … though we haven’t yet!
19
Bioinformatics Tony C Smith Artificial Intelligence Human brains can be expert at very hard tasks expert
20
Bioinformatics Tony C Smith Artificial Intelligence Computers can be programmed to do a lot of hard things … often better! expert system expert
21
Bioinformatics Tony C Smith Artificial Intelligence But people can start from nothing, then get better and better … and they are versatile! learnerexpert system
22
Bioinformatics Tony C Smith Artificial Intelligence Machine learning is about creating programs that can get better and better learnerlearning system
23
Bioinformatics Tony C Smith Machine learning creating computer programs that get better with experience learn how to make expert judgments discover previously hidden, potentially useful information (data mining) What is machine learning? How does it work? user provides learning system with examples of concept to be learned induction algorithm infers a characteristic model of the examples that model can represent “new knowledge” that was previously hidden, and/or it can be used to make predictions/decisions about future novel data
24
Bioinformatics Tony C Smith proteomics Three consecutive nucleotides in the coding region form a ‘codon’ … i.e. encode an amino acid. 3 nucleotides, 4 possibilities each {A, C, G, T}: 4 3 = 64 possible codons But there are only 20 amino acids! A string of amino acids makes a protein.
25
Bioinformatics Tony C Smith proteomics Glycine:GGA, GGC, GGG, GGT Tyrosine:TAT, TAC Methionine:ATG There is quite a bit of redundancy in codons.
26
Bioinformatics Tony C Smith Amide group Carboxyl group R group Amino Acid
27
Bioinformatics Tony C Smith Amino Acid glycine tyrosine
28
Bioinformatics Tony C Smith
31
Biotechnology Biologists know proteins, computer scientists know machine learning Together, they can find out a lot of hidden information about genes and proteins Biotechnology is a multi-billion dollar industry Biotechnology is one of the best funded areas of scientific research
32
Bioinformatics Tony C Smith The University of Waikato Waikato University is the centre of the universe for machine learning The Machine Learning Group is a large, globally active, well-funded research group The WEKA workbench of ML tools is used around the world Professors at Waikato University literally wrote the book on sequence modeling
33
Bioinformatics Tony C Smith The University of Waikato If you’re seriously interested in machine learning, in getting involved in bioinformatics research, or indeed any other area along the leading edge of computer science, then university is the only place to be, and Waikato wants You!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.