Download presentation
Presentation is loading. Please wait.
Published byRosamund Holmes Modified over 8 years ago
1
Diffuse supernova neutrinos Cecilia Lunardini Arizona State University And RIKEN BNL Research Center
2
What can we learn (and how)? Generalities & motivation Future detectors: potential –Water Cherenkov –Water + Gd –Liquid scintillator –Liquid Argon Ideas for R&D Perspective for the future
3
The feeble signal of all SNe Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004.
4
Probes deep in star’s interior… physics near SN core –Energetics of collapse (mass of core, eq. of state) spectra formation oscillations at extreme density – - refraction effects, mass spectrum, 13 new physics: –axions, majorons, sterile, – decay, …
5
Alternative to a galactic supernova! –Lower statistics –Continuous flux, no waiting time –might be standard physics in future! ~20 events/year at 20 £ SuperK A galactic supernova will always be once in a lifetime, the DF will be everyday stuff
6
…and deep in space (and time!) ~40 % of ’s above 19.3 MeV are from z>0.5! S. Ando and K. Sato, New J.Phys.6:170,2004
7
Test cosmological rate of Sne Probe history of star formation –Short lived stars SN rate traces star formation rate: R SF / R SN Reveal the first stars (Population III, z ~ 13 -20)
9
Predicting the DF At E >~ 10-15 MeV: Cosmological supernova rate from individual SN with oscillations From original neutrino spectrum ( ~ 5-7 MeV, depending on oscillations, etc.) dependence C.L., PRD75,2007
10
Status of theory: anti- e flux Differences due to different inputs/methods C.L., Astropart.Phys.26:190-201,2006
11
Experimental status (new!) Species (experiment) Previous best (cm -2 s -1 ) 90%CL (direct limits only) New from SK (cm -2 s -1 ) 90% CL Anti- e (SK coll.) 1.2 (E/MeV>19.3)1.4-2.0 (E/MeV>19.3) e (SNO) 70, (22.9<E/MeV<36.9) 42-54, (22.9<E/MeV<36.9) + (LSD) 3 10 7 (E/MeV>20) (1.0-1.4) 10 3 (E/MeV>19.3) Anti- + anti- (LSD) 3.3 10 7 (E/MeV>20) (1.4-1.8) 10 3 (E/MeV>19.3) C. L. and O.L.G. Peres, JCAP08(2008)033
12
The future: what can we learn? Potential of next generation detectors
13
Pure water: anti- e anti- e + p ! n + e + Zhang et al. (Kamiokande) PRL61, 1988; Malek et al. (SuperK), PRL90, 2003; Aharmim et al., (SNO), PRD70, 2004; D. Autiero et al. (MEMPHYS, HyperK), arXiv:0705.0116.
14
Pros and Cons Well studied Scalable Background- dominated –invisible , atm. –Cut at E thr ~19.3 MeV (anti- e energy) Fogli et al. JCAP 0504:002,2005
15
(10-20) £ SK : event rate Exposure 1.6 Mton £ year –e.g., 0.2 Mt for 8 years –Threshold 19.3 MeV, 100% efficiency SN1987A- motivated (conservative) Model- motivated (generic) Max. allowed by SK limit 7-60~80-100~170-420 C.L., Astropart.Phys.26:190-201,2006, Fogli et al. JCAP 0504:002,2005, Volpe & Welzel, 2007, C. L. and O.L.G. Peres, JCAP08(2008)033
16
Spectral sensitivity: limited by background needs N ~ 100- 200 – larger than typical, (incompatible with SN1987A) Useful: ~ 0.6 - 3 Normalized to 60 events, =3.28 Subtracted signal + total error C.L., Phys.Rev.D75:073022,2007 Error bars from Fogli et al, JCAP 0504:002,2005 N(18-23 MeV) N(23-28 MeV)
17
Normalized to 60 events, E 0 /MeV=15, =2.6 =2 =3.28 =5 Testing not realistic Good to learn about original spectrum –No degeneracy! C.L., Phys.Rev.D75:073022,2007
18
Most likely scenario: rate only Test of normalizations: –SN rate normalization –SN neutrino flux luminosity –Model-dependent (need to assume neutrino spectrum) Indirect sensitivity to energy spectrum –Tested for fixed normalizations Reminds me of Ray Davis’ Homestake!
19
SNR/SNR 0 L /L 0 From diffuse flux From astro surveys (SNAP, JWST) From SN codes Room for suprises: invisible Supernovae? http://snap.lbl.gov/ http://www.jwst.nasa.gov/ http://www.jwst.nasa.gov/,
20
Example from the present: SK bound constraining SN rate normalization –Spectrum dependent! Beacom et al., JCAP 0504:017,2005
21
Water + Gadolinium Anti- e + p ! n + e + Beacom & Vagins, Phys.Rev.Lett.93:171101,2004
22
Pros and cons Solution of water + GdCl 3 (0.2%) –n capture on Gd: e+ and n in coincidence –Filters spallation and invisible muons –Higher risk (new technique) –Cheap, safe, easy (SK tank can be used) GADZOOKS: Beacom and Vagins, PRL93, 2004
23
Major improvement with background –E th ~ 11.3 MeV (limited by reactors) Fogli et al. JCAP 0504:002,2005
24
(10-20) £ SK : event rate Exposure 1.6 Mton £ year –e.g., 0.2 Mt for 8 years –Threshold 11.3 MeV, 100% efficiency SN1987A- motivated (conservative) Model- motivated (generic) Max. allowed by SK limit ~22-128~250... C.L., Astropart.Phys.26:190-201,2006, Fogli et al. JCAP 0504:002,2005, Volpe & Welzel, 2007, C. L. and O.L.G. Peres, JCAP08(2008)033
25
Spectral sensitivity! Normalized to 150 events, =3.28 C.L., Phys.Rev.D75:073022,2007
26
A step beyond SN1987A! Test SN codes of spectra formation, some oscillation effects, etc. 0.1 Mt £ yr : –Tests part of parameter space –May not reach SN1987A region 0.1 Mt £ yr Yuksel, Ando and Beacom, Phys.Rev.C74:015803,2006
27
Chance to test ! r ~ 0.6 – 0.9 Normalized to 150 events C.L., Phys.Rev.D75:073022,2007
28
C.L., Astropart.Phys.26:190-201,2006 Direct supernova observations Diffuse neutrinos
29
Liquid scintillator Anti- e + p ! n + e + Eguchi et al. (KamLAND), PRL92, 2004; Aglietta et al.(LSD), Astrop. Phys. 1, 1992; Wurm et al. (LENA), Phys.Rev.D75:023007,2007
30
LENA @ Pyhäsalmi (Finland), 50 Kt dependent on SN model (CSFR assumed, f*=2.5) LL:120 KRJ:105 TBP:68 dependent on SFR f*=0.720 CSFR105 f*=4.2200 event rate in 10 yrs: inside the energy window from 9.7 to 25 MeV background events: 12 From: M. Wurm, talk at NNN06
31
Avoid nulear powerplants! Wurm et al., PRD75, 2007 For LENA :
32
Probing the neutrino spectrum:
33
Liquid argon e + Ar ! K + e - D. Cline et al. (LANNDD), Nucl.Instrum.Meth.A503:136-140,2003; B Fleming (ArgoNEUT), Nucl.Phys.Proc.Suppl.155:245-247,2006; Baibussinov et al. (MODULAr), Astropart.Phys.29:174-187,2008 ; Autiero et al. (GLACIER, LAGUNA), JCAP 0711:011,2007
34
Cocco et al., JCAP 0412:002,2004 Background: –Solar –Atmospheric –Energy window: 16-40 MeV (normalization- dependent) 0.5 Mt £ year: –N » 60
35
Best e detector! With both e and anti- e physics potential at least doubles! Volpe & Welzel, arXiv:0711.3237
36
Ideas for R&D A theorist’s perspective
37
Oscillations reduce reactor background Five reactors closest to Homestake If all reactors were at 510 Km (optimal distance for suppression at 11 MeV: D/Km= 170,510,850, …) C.L., in preparation Energy window can be ~1 MeV lower
38
Directional detection for signal separation Only way to fully separate backgrounds (solar, reactor) –Open energy window 1 – 10 MeV : cold neutrinos from Pop III stars, neutron stars, geoneutrinos, … Necessary for truly multi-purpose facility! F. Iocco et al, Astropart. Phys. 23 (2005 )
39
Gd- or Li-loaded liquid scintillator –e - scattering in LAr Kinematic reconstruction of CC reactions in LAr Hochmuth et. al., Astropart. Phys. 27 (2007), Shimizu, Nucl. Phys. Proc. Suppl. 168 (2007) Shimizu, Nucl. Phys. Proc. Suppl. 168 (2007)
40
Perspectives for the future
41
Conservative scenario No galactic SN in the next 10 yrs The DF will be detected : first data after SN1987A! –Water+Gd 20 kt indication –Water 0.4 Mt evidence (rate only?) –Water+Gd 0.4 Mt measure spectrum or Liquid scintillator 50 kt
42
With spectral sensitivity: beyond SN1987A –Strong focus on original spectrum –Some sensitivity to –constraint on L £ R(0) More precise from SN surveys (SNAP, JWST) http://snap.lbl.gov/ http://www.jwst.nasa.gov/ http://www.jwst.nasa.gov/,
43
Exciting scenario Precise L and spectrum from Galactic supernova Precise from SN surveys DF will help measure: –R(0) (independent check) – (independent check) –fraction of stars that become SN (failed SN?) –progenitor dependence of neutrino spectrum
44
Talk in one slide 0.1 Mt £ yr Direct supernova observations Diffuse neutrinos Background separation at low energy is key!
45
Backup slides
46
Literature –Bisnovatyi-Kogan & Seidov, 1982 ; Krauss,Glashow & Schramm, 1984 ; Woosley, Wilson &Mayle, 1986 ; Totani & Sato, 1995 ; Totani, Sato& Yoshii, 1995 ; Malaney 1997; Hartmann &Woosley 1997; Kaplinghat, Steigman & Walker,2000 ; Ando, Sato & Totani, 2003 ; Ando &Sato, 2003 ; Strigari, Kaplinghat, Steigman&Walker, 2000 ; Ando, 2004 ; Iocco et al.,2004; Lunardini 2005 ; Daigne, Olive, Sandick & Vangioni, 2005; Lunardini, 2006; Wurm et al., 2007; Yuksel & Beacom, 2007; Volpe & Welzel, 2007; Chakraborty et al., 2008; Lunardini & Peres, 2008
47
Sensitivity to SN rate
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.