Download presentation
1
Cheng Zhao Supervisor: Charling Tao
Cosmological parameter constraints and large scale structure of the universe Cheng Zhao Supervisor: Charling Tao
2
Outline Introduction Probes Large scale structure Perturbation theory
References
3
Standard cosmological model
Introduction Standard cosmological model Hot Big Bang cosmology with primordial fluctuations that are adiabatic and Gaussian. (Consistent with CMB measurements) Wikipedia.org
4
Outline Introduction Probes Large scale structure Perturbation theory
References
5
Probes Overview Cosmic microwave background (CMB) Supernova
Temperature anisotropy Polarization Supernova Large scale structure (LSS) Geometry Structure growth …
6
Probes CMB Geometry (curvature) Age Composition Primordial fluctuation
Inflation …
7
Supernova – standard candle
Probes Supernova – standard candle Hubble parameter Dark energy … Wikipedia.org
8
Large scale galaxy survey
Probes Large scale galaxy survey Baryon Acoustic Oscillations (BAO, standard ruler) Redshift space distortion (RSD) Matter fluctuations/density CDM or WDM? Galaxy bias Dark energy Neutrino mass Non-Gaussianity …
9
Gravitational lensing
Probes Gravitational lensing Mass power spectrum Matter fluctuation/density … Wikipedia.org
10
Probes Combination Supernova Cosmology Project
11
Probes Parameterization 13 basic parameters 𝜏
Reionization optical depth 𝐴 𝑠 Scalar fluctuation amplitude 𝜔 𝑏 Baryon density 𝑛 𝑠 Scalar spectral index 𝜔 𝑑 Dark matter density 𝛼 Running of spectral index 𝑓 𝜈 Dark matter neutrino fraction 𝑟 Tensor-to-scalar ratio Ω Λ Dark energy density 𝑛 𝑡 Tensor spectral index 𝑤 Dark energy equation of state 𝑏 Galaxy bias factor Ω 𝑘 Spatial curvature Tegmark et al. 2004
12
Derived parameters (CMB)
Probes Parameterization Derived parameters (CMB) 𝑧 ion Reionization redshift (abrupt) 𝑡 0 Age of universe 𝜔 𝑚 Physical matter density 𝜎 8 Galaxy fluctuation amplitude Ω 𝑚 Matter density/critical density 𝑍 CMB peak suppression factor Ω tot Total density/critical density 𝐴 𝑝 Amplitude on CMB peak scales 𝐴 𝑡 Tensor fluctuation amplitude Θ 𝑠 Acoustic peak scale 𝑀 𝜈 Sum of neutrino masses 𝐻 2 2nd to 1st CMB peak ratio ℎ Hubble parameter 𝐻 3 3rd to 1st CMB peak ratio 𝛽 Redshift distortion parameter 𝐴 ∗ Amplitude at pivot point Tegmark et al. 2004
13
Probes Planck 2013 data release
In combination with WMAP polarized CMB data at low ℓs, and CMB data from ACT and SPT at high ℓs: Matches well with minimal ΛCDM model, with “vanilla” 6 parameters: { 𝜔 𝑏 , 𝜔 𝑚 , ℎ, 𝜏, 𝑛 𝑠 , 𝐴 𝑠 }. No preference for extending models. Planck Collaboration, 2013 & Costanzi et al. 2014
14
Probes SDSS-III BOSS DR11
Geometry ( 𝐷 𝐴 , 𝐻) and structure growth (𝑓∙ 𝜎 8 ). Consistent with Planck prediction within ΛCDM. Total neutrino mass 𝑀 𝜈 =0.36±0.10 eV, higher than 𝑀 𝜈 <0.23 eV of Planck. 2𝜎 tension of growth index 𝛾 from ΛCDM-GR prediction, in combination with Planck/WMAP9. Beutler et al, 2014 & Sanchez et al. 2014
15
Probes BICEP2 Measured 𝑟=0.2±0.06 (Tensor-to-scalar ratio), higher than 𝑟<0.11 without running spectral index of Planck. B-mode polarization or dust polatization? BICEP2 Collaboration, 2014
16
Outline Introduction Probes Large scale structure Perturbation theory
References
17
Large Scale Structure Probes Large scale galaxy survey
Angular galaxy survey (model dependent) Gravitational lensing Lyman-α forest Hydrogen 21 cm emission line Quasar Clustering Useful tool: N-body numerical simulation (covariance matrix & galaxy bias)
18
Large Scale Structure Observations Photometric Spectroscopic Spitzer
Dark Energy Survey (DES) The VLT FIRST survey Large Synoptic Survey Telescope (LSST) Spectroscopic 2/6-degree Field Galaxy Redshift Survey CfA redshift survey DEEP2 redshift survey European Southern Observatory Slice Project (ESP) Sloan Digital Sky Survey (SDSS)
19
Large Scale Structure eBOSS
Transition from deceleration to acceleration (𝐻(𝑧)) Structure growth (test of GR-ΛCDM) Neutrinos QSO/galaxy science …
20
Large Scale Structure Statistics 2-point correlation function
𝑑𝑃= 𝑛 1+𝜉 𝑟 𝑑𝑉 𝜉 𝑟 = 𝛿 𝒙 𝛿(𝒙+𝒓) , 𝛿=𝜌/ 𝜌 −1 𝜉= 1 𝑅𝑅 𝐷𝐷 𝑛 𝑅 𝑛 𝐷 2 −2𝐷𝑅 𝑛 𝑅 𝑛 𝐷 +𝑅𝑅 Power spectrum 𝜉 𝑟 = 𝑑 3 𝒌 𝑃 𝑘 exp (𝑖𝒌∙𝒓) 𝛿( 𝒌 1 )𝛿( 𝒌 2 ) 𝑐 = 𝛿 𝐷 𝒌 1 + 𝒌 2 𝑃( 𝒌 1 )
21
Large Scale Structure Statistics Higher order statistics
3-point correlation function & bispectrum 4-point correlation function & trispectrum … Anisotropic statistics 𝑃 ℓ (𝑘)≡ 2ℓ+1 2 −1 1 𝑑𝜇 𝑃(𝑘,𝜇) 𝐿 ℓ (𝜇)
22
Large Scale Structure BOSS result Anderson et al, 2012
23
Baryon Acoustic Oscillation (BAO)
Large Scale Structure Baryon Acoustic Oscillation (BAO)
24
Large Scale Structure Redshift space de Lapparent V. et al, 1986
25
Large Scale Structure Redshift space Kaiser Effect & Fingers of God
Hamilton 1998
26
Redshift space distortion
Large Scale Structure Redshift space distortion 2dFGRS BOSS Peacock et al, 2001 Samushia et al, 2014
27
Large Scale Structure Galaxy bias
28
Large Scale Structure Galaxy bias
Relation between galaxy density and dark matter density: 𝛿 𝑔 =𝑓( 𝛿 DM ) Linear estimation: 𝑏= 𝛿 𝑔 / 𝛿 DM
29
Estimate of galaxy bias
Large Scale Structure Estimate of galaxy bias 2-point correlation function of galaxies and dark matter (N-body simulation): 𝑏= 𝜉 𝑔 / 𝜉 DM 1/2 Ratio of 2-point and 3-point correlation functions, which have different dependencies on the bias. (Noisy)
30
N-body numerical simulation
Large Scale Structure N-body numerical simulation Trace dark matter particles (and baryons). Input: Linear power spectrum from CMB Gaussian random primordial fluctuation Cosmological parameters Initial conditions from perturbation theory Dynamics: Tree algorithm Particle-Mesh (PM) algorithm Hybrid methods (AP3M, AMR, etc.)
31
Outline Introduction Probes Large scale structure Perturbation theory
References
32
Dynamics of gravitational instability
Perturbation Theory Dynamics of gravitational instability Assumption: collisionless cold dark matter (CDM). Discrete effects such as 2-body relaxation are negligible Non-relativistic Comoving coordinates 𝒙, conformal time 𝜏, and conformal expansion rate ℋ: 𝒓=𝑎 𝜏 𝒙 𝑑𝑡=𝑎 𝜏 𝑑𝜏 ℋ≡𝑑 ln 𝑎 /𝑑𝜏=𝐻𝑎
33
Dynamics of gravitational instability
Perturbation Theory Dynamics of gravitational instability Peculiar velocity 𝒖: 𝒗 𝒙,𝜏 ≡ℋ𝒙+𝒖(𝒙,𝜏) 𝒑=𝑎 𝑚 𝒖 Cosmological gravitational potential Φ: 𝐺 𝑑 3 𝒙 ′ 𝜌( 𝒙 ′ ) 𝒙 ′ −𝒙 =𝜙 𝒙,𝜏 ≡− 1 2 𝜕ℋ 𝜕𝜏 𝑥 2 +Φ(𝒙,𝜏) Poisson equation: 𝛻 2 Φ 𝒙,𝜏 = 3 2 Ω 𝑚 𝜏 ℋ 2 𝜏 𝛿(𝒙,𝜏)
34
Perturbation Theory Vlasov equation
Particle number density in phase space 𝑓(𝒙,𝒑,𝜏): 𝑑𝑓 𝑑𝜏 = 𝜕𝑓 𝜕𝜏 + 𝒑 𝑚𝑎 ∙𝛻𝑓−𝑎 𝑚 𝛻Φ∙ 𝜕𝑓 𝜕𝒑 =0
35
Perturbation Theory Lagrangian dynamics
Initial position 𝒒 and displacement field 𝜳(𝒒,𝜏): 𝒙 𝜏 =𝒒+𝜳(𝒒,𝜏) Equation of motion: 𝑑 2 𝒙 𝑑 𝜏 2 +ℋ 𝜏 𝑑𝒙 𝑑𝜏 =−𝛻Φ Poisson equation: 𝛻 𝑥 2 Φ=−𝛻∙ 𝑑 2 𝜳 𝑑 𝜏 2 +ℋ 𝜏 𝑑𝜳 𝑑𝜏 = 3 2 Ω 𝑚 (𝜏) ℋ 2 (𝜏)𝛿(𝒙,𝜏) 𝛻 𝑥 𝑖 = 𝛿 𝑖𝑗 𝐾 +𝜕 𝜳 𝑖 /𝜕 𝒒 𝑗 −1 𝛻 𝑞 𝑗
36
Lagrangian perturbation theory
Zel’dovich Approximation (ZA) 𝜓 ZA ≡𝛻∙ 𝜳 ZA =− 𝐷 1 𝜏 𝛿 (1) (𝒒) 2-order Lagrangian PT (2LPT) 𝜓 2LPT ≡𝛻∙ 𝜳 2LPT =− 𝐷 1 𝜏 𝛿 1 𝒒 + 𝐷 2 𝜏 𝛿 2 𝒒 Spherical collapse (SC) 𝜓 SC ≡𝛻∙ 𝜳 SC =3 1− 2 3 𝐷 1 𝜏 𝛿 (1) (𝒒) 1/2 −1
37
Perturbation Theory Cosmic web Density field: Jacobian 𝐽:
𝜌 1+𝛿 𝒙 𝑑 3 𝑥= 𝜌 𝑑 3 𝑞 Jacobian 𝐽: 1+𝛿 𝒙,𝜏 = 1 Det( 𝛿 𝑖𝑗 𝐾 +𝜕 𝜳 𝑖 /𝜕 𝒒 𝑗 ) ≡ 1 𝐽(𝒒,𝜏) Local density field (ZA): 1+𝛿 𝒙,𝜏 = 1 1− 𝜆 1 𝐷 1 (𝜏) 1− 𝜆 2 𝐷 1 (𝜏) 1− 𝜆 3 𝐷 1 (𝜏) 𝜆 1 , 𝜆 2 , 𝜆 3 : eigenvalues of tidal tensor 𝜳 𝑖,𝑗 .
38
Perturbation theory Cosmic web All positive: knot
2 positive and 1 negative: sheet 1 positive and 2 negative: filament All negative: void Knot Sheet/Filament Void
39
Perturbation Theory Cosmic web
40
References Anderson L. et al., MNRAS. 427. 3435A, 2012
Bernardeau F. et al., PhR B, 2002 Beutler F. et al., MNRAS B, 2014 BICEP2 Collaboration, PRL. 112, 2014 Coil Alison L., Planets, Stars and Stellar Systems Vol. 6, 2013 Costanzi M. et al., arXiv , 2014 de Lapparent V. et al., ApJ. 302L, 1986 Hamilton A. J. S., ASSL H, 1998 Hu J-W. et al., JCAP H, 2014 Peacock J. A. et al., Nature P, 2001 Percival W. J., arXiv: , 2013 Planck Collaboration, 2013 results. Samushia L. et al., MNRAS S, 2014 Sanchez A. et al., MNRAS S, 2014 Tegmark M. et al., PhysRevD , 2004 Viel M. et al., MNRAS. 339L. 39V, 2009
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.