Download presentation
Presentation is loading. Please wait.
Published byLillian Caldwell Modified over 8 years ago
1
CELSIUS-WASA,WASA-at-COSY: two-pion production in NN collisions T. Skorodko, Physikalisches Institut, Univ.Tubingen
2
Content * CELSIU-WASA * WASA-at-COSY pp→pp + -- pp→pn + 0 I=0,1 ? pp→pp 0 0 pp→nn + + I=1 T p =0.75 – 1.4 GeV T p = 1.2 GeV, deuteron target pn→pn 0 0 (in progress) pn→pp -- 0 Roper, , (1600) T d = 2.27 GeV, proton target ValenciamodelValenciamodel
3
WASA 4 detector
4
pp→pp + - pp→pp 0 0 pp→nn + + THEORYTHEORY EXPERIMENTEXPERIMENT N * → N N * → pp→pn + 0
5
NN→NN : Valencia model L.Alvarez-Ruso et al., Nucl.Phys. A 633(1998) 519
6
0 0 production at T p < 1 GeV Valencia model A(tot) A(N * →N )+A(N * → ) T p =0.795 GeV COSY-TOF agree with Bonn-Gatchina result, A.Sarantsev et al., Phys.Lett. B 659(2006) 94 T p =0.895 GeV All theoretical curves are normalized in area to the data
7
0 0 production at T p > 1 GeV VC with readjusted N→ branch T p = 1 GeVT p = 1.1 GeVT p = 1.2 GeVT p = 1.3 GeV All theoretical curves are normalized in area to the data
8
Isospin decomposition T. Skorodko et al., Phys. Lett. B 679(2009), 30
9
Cross section pp → nn
10
Total cross section M 121
11
pp→pp 0 0 pp→pp + - ? N * → N * → N Theory Experiment : ( ) I=0
12
Total cross section M 121 M 101 cosφ=1
14
production at T p > 1.2 GeV pp→pp + - @ T p =1.36 GeV pp→pp 0 0 @ T p =1.3 GeV Valencia calculations
15
T p =0.895 GeV Interference between Roper and ΔΔ
16
M 121 M 101 M 101 (N * ) Total cross section N* (Valencia) (Valencia) cosφ=1 T. Skorodko et al., Phys. Lett. B 679(2009), 30
17
Cross section pp → nn CELSIUS/WASA excitation experiment
18
+ + I=2 (1232) (1600) very small amplitude according to Valencia model M =1500─1700 MeV threshold energy threshold energy =200─400 MeV can contribute at low energy Additional resonance with I=3/2
19
pp → nn p MeV Valencia predictions + (1600)
20
pp→pn + 0
21
0 0 production at T p > 1 GeV VC with readjusted N * → branch VC with readjusted total N * strength (T. Skorodko et al., Phys.Lett. B 679 (2009) 30) T p = 1 GeVT p = 1.1 GeVT p = 1.2 GeVT p = 1.3 GeV
22
0 0 production at T p > 1 GeV modification of the excitation include relativistic corrections reduce the contribution from ρ-exchange in excitation by an order of magnitude (Xu Cao et al., nucl-th:1004.0140) T. Skorodko et al., Phys.Lett. B 695 (2011) 115
23
0 0 production at T p > 1 GeV VC with readjusted N→ branch VC with readjusted total N * strength VC with readjusted total N * strength and with modified excitation T p = 1 GeVT p = 1.1 GeVT p = 1.2 GeVT p = 1.3 GeV
24
Total pp→pp 0 0 cross section VC with readjusted total N * strength and with modified excitation original VC VC with readjusted N→ branch VC with readjusted total N * strength
25
modified’ Valencia model (without readjustment N * strength) modified Valencia model
26
modified’ Valencia model (without readjustment N * strength) modified Valencia model modified Valencia model + ABC resonance
27
WASA-at-COSY data : I=0,1
28
* double-pionic fusion pn→d 0 -0 pd→He 3 0 0 dd→He 4 0 0 I 0 excess energy at maximum: Q ≈ 0.22 GeV ABC effect
29
We have data at T p = 1.2 GeV excess energy Q : 0.17 – 0.35 GeV pn→R→ 0 d00d00 pn 0 0 pp - 0 I 0 0 1 no ABC effect, but resonance ? prediction Faldt & Wilkin PLB 701 (2011) 619
30
▲ Brunt □ Dakhno ■ KEK L.Alvarez-Ruso et al., Nucl.Phys. A 633(1998) 519 N * → non resonant [ b] T p [MeV] pn→pp - 0 full Valencia calculations
31
Total cross section KEK NIROD at RAL Gathina WASA-at-COSY N * → original Valencia model modified Valencia model modified Valencia model + d * d*d*
32
preliminary modified Valencia model + d * modified Valencia model
33
preliminary modified Valencia model + d * modified Valencia model
34
preliminary modified Valencia model + d * modified Valencia model
35
p p n n d * 03 d * 12 + d d M.Platonova and V.Kukulin arXiv:1211.0444 [nucl-th]
36
cos(p) cm preliminary modified Valencia model + d * modified Valencia model
37
cos( - ) cm preliminary modified Valencia model + d * modified Valencia model
38
pn→pp - 0 : no significant indication of ABC effect in differential cross sections total cross sections can be described by the modified Valencia model with the additional excitation of the d * resonance invariant mass M pp requires p-wave between two protons in addition to the vertex form factor (was introduced for the description of the ABC effect)
39
Theory ↔ Experiment pn→pn 0 0 (np s ) + p at T d =2.27 GeV TpTp ABC
40
modified’ Valencia model (without readjustment N * strength) modified Valencia model modified Valencia model + ABC resonance (same strength, as in d modified Valencia model + ABC resonance (half of strength, as in d
41
Thank You
42
pn→R→ 0 d00d00 pn 0 0 form factor
43
pp → nn p MeV Valencia predictions + (1600)
44
Particle identification (Central Detector) Momentum vs deposited energy in Plastic Barrel Energy deposited in CsI vs deposited energy in Plastic Barrel Momentum vs deposited energy in CsI
45
Particle identification → 2 s) reconstruction from detection proton identification: dE/E method 2 identification M p
46
T p =0.895 GeV Interference between Roper and ΔΔ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.