Presentation is loading. Please wait.

Presentation is loading. Please wait.

Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen.

Similar presentations


Presentation on theme: "Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen."— Presentation transcript:

1 Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen

2 Content * NN→NN  * NN→d   +  -,  0  0 production at T p < 1.0 GeV: Roper resonance * Summary Theoretical and experimental situation  0  0,  +  + production at T p > 1.0 GeV: ,  (1600) isospin decomposition d  +  0 production at T p = 1.1 GeV: , no ABC effect d  0  0 production at T p > 1.0 GeV: , ABC effect Motivation

3 WASA 4  detector

4 NN→NN  : Valencia model L.Alvarez-Ruso et al., Nucl.Phys. A 633(1998) 519

5 Theory ↔ Experiment N * →N(  ) I=0 N * →   pp→pp  +  - pp→pp  0  0 N * →N(  ) I=0 N * →  

6 Theory ↔ Experiment pp→nn  +  +  pp→pn  +  0

7  0  0 production at T p < 1 GeV Valencia model A(tot)  A(N * →N  )+A(N * →  ) T p =0.775 GeV T p =0.895 GeV At Roper mass M=1440 MeV

8  +  - production at T p = 0.8 GeV S. Abd El-Bary at el.,Eur.Phys.J. A 37(2008) 267 (COSY-TOF)

9 Decay branchings of Roper  -decay R=  (N * →  →N  )/  (N*→N  →N  ) N * mass [MeV]1371 1440 CELSIUS-WASA ** PDG Bonn-Gatchina * 0.28(3) 1.0(1) 4(2) 0.9(1) * Partial Wave Analysis γp→p  0  0  N→  N γp→p  0  - p→ n  0  0 A. Sarantsev et al., Phys. Lett. B 659(2008) 94 ** T.Skorodko et al., Eur. Phys. J. A 35(2008) 317

10 Isospin decomposition T. Skorodko et al., Phys. Lett. B 679(2009), 30

11 M 121 M 101 M 101 (N * ) Total cross section N* (Valencia)  (Valencia) cosφ=1 T. Skorodko et al., Phys. Lett. B 679(2009), 30

12 pp→pp  0  0 T p = 1 GeVT p = 1.1 GeV Valencia calculations with readjusted N * →  branch Valencia calculations with total Roper contribution reduced according to isospin decomposition

13 Cross section pp → nn     CELSIUS/WASA  excitation experiment 

14  +  +  I=2  (1232)  (1600) very small amplitude according to Valencia model M  =1500─1700 MeV  threshold energy  threshold energy    =200─400 MeV  can contribute at low energy Additional resonance with I=3/2

15 Conclusions I  The main  isoscalar production mechanism is the Roper excitation and its decay  The branching ratio of the Roper decays N * →N  /N * →  at a pole mass of 1371 MeV is 4:1  This result is in favor of a monopole mode interpretation of the Roper excitation  According to the isospin decomposition the energy dependence of the Roper total cross section behaves like a s-channel excitation  Description of the  +  + production data both in total and differential cross sections requires additional contribution from a resonance with isospin 3/2. A good candidate is  (1600)

16 From unbound to bound system: ABC effect

17 First step into the ABC Alexander Abashian, Norman E. Booth and Kenneth M. Crowe, Phys. Rev. Lett. 5, 258 (1960) π 2 π Phase Space  C

18 ABC and ΔΔ models T.Risser, M.D. Shuster, Phys.Lett. B 43, 68(1973) F.Plouin et all, Nucl.Phys. A 302(1978) 413

19 pn→d  0  0 T p =1.03 GeV T p =1.36 GeV conventional  calculation M.Bashkanov et al., Phys.Rev.Lett. 102(2009), 052301

20 Total cross section M.Bashkanov et al., Proc. PANIC09, 239

21 pn→d  0  0 T p =1.03 GeV T p =1.36 GeV  calculation with a s-channel resonance  calculation without a s-channel resonance M.Bashkanov et al., Phys.Rev.Lett. 102(2009), 052301

22 Crucial test of t-channel  : pp→d  +  0

23 pp→d  +  0 at T p =1.1 GeV ( S=2.36 GeV)  calculations for iso- scalar channel  calculations for iso- vector channel F.Kren et al., Int.J.Mod.Phys. A 24(2009), 561

24 Total cross section  (t-channel) F.Kren et al., nucl-ex/0910.0995 J.Bystricry et al. F.Shimizy et al. CELSIUS-WASA

25 Conclusion II pn→d  0  0 - ABC effect: isoscalar s-channel resonance with M ABC  2M  - 90 MeV  ABC  50 MeV << 2   pp→d  +  0 - no ABC effect:  t-channel excitation

26 Thank you

27 conventional t-channel  model ANKE ‘ABC’ data

28 Total xsection pn  d  0  0  (  +  0 )=  (I=1)  (  +  - )=0.5  (I=1)+2  (I=0)  (  0  0 )=  (I=0)=0.2  (I=1) pp  d  +  0 t - channel 

29 Qualitative description n p n Δ Δ d π π + Δ Δ d π π p

30 Theory ↔ Experiment pp→nn  +  +  pp→pn  +  0 

31 Theory ↔ Experiment N * →N(  ) I=0 N * →  pp→pp  +  - pp→pp  0  0 N * →N(  ) I=0 N * →  

32  production at T p > 1.2 GeV pp→pp  +  - @ T p =1.36 GeV pp→pp  0  0 @ T p =1.3 GeV Valencia calculations

33  0  0 production at T p > 1 GeV original Valencia calculations

34 pp → nn      p  MeV Valencia predictions  +  (1600)

35 Spin of ABC effect L=0

36      production → Roper ansatz T p =0.75 GeV Phys.Rev.Lett. 88, 192301(2002) N * → Nσ N * → Δ  N*N* ΔΔ NσNσ N  All theoretical curves are normalized in area to the data

37 Event selection pp→pp     → pp4  T p =0.775 GeV T p =1.1 GeV p 1 angle lab p 2 angle lab  angle lab Central Detector

38 Particle identification (Central Detector) Momentum vs deposited energy in Plastic Barrel Energy deposited in CsI vs deposited energy in Plastic Barrel Momentum vs deposited energy in CsI

39 Particle identification   → 2    s)    reconstruction from  detection proton identification: dE/E method 2    identification M  p

40 Experimental evidence for a „narrow“ Roper  p →  X @ 4.2 GeV (Saturne) J J/   → N N* and N N* (BES) M Roper = 1358 MeV  Roper = 179 MeV M Roper = 1390 MeV  Roper = 190 MeV

41 pp (WASA) pp → pn    @ 1.3 GeV (WASA) Experimental evidence for a „narrow“ Roper M N* =1380 MeV, Γ=180 MeV

42 T p =0.895 GeV Interference between Roper and ΔΔ

43 M 121  in 4 times bigger  cross section in pp  0  0  no contribution from 

44 M 121  in 4 times bigger  cross section in pp  0  0  no contribution from 

45 cosφ  +1

46 pp → pn  0  +  prediction


Download ppt "Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen."

Similar presentations


Ads by Google