Download presentation
Presentation is loading. Please wait.
Published byElisabeth Watson Modified over 8 years ago
1
W. Heil He/Xe Clock-Comparison Experiments PSI 12.09.2013 Limit on Lorentz and CPT Violation Using a Free Precession 3He/129Xe Co-magnetometer Background fields (tensor fields) give preferred direction e.g. rest frame of CMB talk of Ralf Lehnert Outline: Experimental searches for Lorentz and CPT Violation Features of 3 He/ 129 Xe „spin“-clock Conclusion and outlook Results from 3 He/ 129 Xe clock-comparison experiment
2
Michelson (1881,Potsdam) Michelson&Morley (1887,Cleveland) c( ) = c photon sector: Traditional tests of Lorentz symmetry & special relativity 19 independent parameters Li + - ions C.Novotny et al., PR A 80 (2009) 022107 ESR at GSI relativistic Doppler effect c(v) = c
3
Test of constancy of c Kennedy,Thorndike 1932 Hils,Hall 1990 Braxmaier 2002 Wolf 2004 Herrmann 2009 Resonators Interferometers Year
4
Modified Dirac equation for a free spin ½ particle (w=e,p,n) standard DECPT violatingCPT preserving terms A. Kostelecky and C. Lane: Phys. Rev. D 60, 116010 (1999) Lorentz violating terms Standard-Model Extension Experimental access: Cs- fountain Torsion pendulum Antihydrogen spectroscopy Astrophysics Hg/Cs comparison UCN/Hg comparison He/Xe maser K/He co-magnetometer clock comparison experiments Wolf et al., B.Heckel et al. PRD 78 (2008) 092006 - matter sector - Neutron:
5
Topics: searches for CPT and Lorentz violations involving -birefringence and dispersion from cosmological sources -clock-comparison measurements -CMB polarization -collider experiments -electromagnetic resonant cavities -equivalence principle -gauge and Higgs particles -high-energy astrophysical observations -laboratory and gravimetric tests of gravity -matter interferometry -neutrino oscillations -oscillations and decays of K, B, D mesons -particle-antiparticle comparisons -space-based missions -spectroscopy of hydrogen and antihydrogen -spin-polarized matter * Theoretical studies of CPT and Lorentz biviolation involving -physical effects at the level of the SM, General Relativity, and beyond -origins and mechanisms for violations classical and quantum issues in field theory, particle physics, gravity, and strings Modern Tests of Lorentz violation
6
C Coupling of spin to background field: Zeeman LV LAB cosmic microwave background v = 368 km/s T dip 3.3 mK ~ 10 -22 GeV @ 1 T ~ 10 -38 GeV
7
F=4 F=3 133 Cs Micro-Wave f = 9.192… GHz Oscillator + Frequency divider + Counter State detection + frequency feedback accuracy (absolute scale): f 3 µHz corresponding energy shift 1.5·10 -29 GeV Atomic clock Spin clock Spin clock : reference transition at f 10 Hz with f/f 10 -13 accuracy (absolute scale): f 1 pHz 4·10 -36 GeV accuracy to trace tiny frequency shifts 6 orders of magnitude higher
8
3 He / 129 Xe clock comparison to get rid of magnetic field drifts 129 Xe (4,7 Hz) 3 He (13 Hz) B [nT] t [h] 0510152 0 406.68 406.67 406.66 drift ~ 1pT/h 10 -5 Hz/h B 0 ~ 1 T
9
(G. D. Cates, et al., Phys. Rev. A 37, 2877) (ms ) signal (a.u.) Standard NMR How to obtain long spin-coherence times in a macroscopic spin sample ? BMSR 2, PTB Berlin J. Bork, et al., Proc. Biomag 2000, 970 (2000). Motional narrowing : LT c - SQUID gradiometer noise: 10 cm (residual field : ~ 1 nT )
10
Data evaluation and results Fitfunction Individual runs (~24 h): Earth rotation Ramsey-Bloch-Siegert shift ( talk of U. Schmidt)
11
ASD plot of phase residuals Measurement sensitivity: 4 gradiometer, 7 runs Data evaluation and results
12
Global Fitfunction: Fitfunction Individual runs: (95% C.L.) Year 2009 data run: ~ 12 h s = 2 /T SD = 2 /(23 h :56 m :4.091 s ).
13
cos mrad sin mrad -0.8820.8140.015-2.0671.0570.019 To demonstrate the strong dependence of the correlated error on s, corresponding fit results are shown for multiples of s : ’ s = g s. -0.0480.1200.016-0.1490.1120.017 -0.1840.0520.019-0.0110.0430.016 -0.0010.0340.0180.0570.0300.016 March 2009 subrun (shifted by 0.04 rad) 2012 data
14
Data evaluation and results Global Fitfunction: Fitfunction individual runs: Preliminary fit result: SME Kostelecky et al., PR D 60, 116010 (1999) Year 2012 data run: ~ 24 h
15
Results Kostelecky, Russell arXiv:0801.0287v6 (2013) neutron Lorentz violating effect for each gas is that of a single valence neutron (Schmidt model) Tightest constrains on SME parameters on neutron sector:
16
Conclusion 3 He, 129 Xe spin clock based on free spin precession long spin coherence times ultra-sensitive probe for non-magnetic spin interactions of type: Sensitivity (Cramer Rao Lower Bound) : spin coupling to a Lorentz- and CPT-violating background field result (2012 data, preliminary ): Outlook present sensitivity limited by correlated error: increase : matter of research ! gain of measurement sensitivity ~ 100 : essentially by increasing test of SME parameters (energy range) : 10 -36 GeV
17
W. Heil He/Xe Clock-Comparison Experiments PSI 12.09.2013 Thank you for your attention Institut für Physik, Universität Mainz: C. Gemmel, W. Heil, S. Karpuk, K. Lenz Y. Sobolev, K. Tullney Physikalisch-Technische-Bundesanstalt, Berlin: M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg: F. Allmendinger, U. Schmidt 3 He/ 129 Xe Clock-Comparison Experiments
18
backups
19
Change of the absolute field gradient during rotation and its effect on T 2 *
20
20 Limit: 60s only for T < 60s reaches CRLB Test of CRLB via Allan Standard Deviation (ASD) Non-gaussian noise: magnetic field drifts intrinsic noise … 2 ii+1 He/Xe Clock-Comparison Experiments CPT’13 17.06.2013
21
SM: relativistic quantum field theory electromagnetic force weak force strong force gravitation General relativity is a classical theory, i.e., non-quantum Standard Model (SM) of particle physics Unification theories: string theory, loop quantum gravity,.. Planck scale: energy scale where gravity meets quantum physics M p ~ 10 19 GeV Courtesy of C. Lämmerzahl A closer look…
22
Kostelecký, Perry, Pot, Samuel ’89; ’90; ’91; ’95; '00 Spontaneous Lorentz symmetry breaking in string theory e.g. Lorentz vector field makes non zero vacuum expectation value low-energy world Planck scale 10 19 GeV Background fields (tensor fields) give preferred direction e.g. rest frame of CMB D. Colladay and V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys.Rev. D 58, 116002 (1998) talk of Ralf Lehnert
23
Kostelecky et al., Phys. Rev. D 60, 116010 (1999) 3 He: µ = -2.1276 µ K 129 Xe: µ = -0.7779 µ K n : µ = -1.913 µ K Schmidt-Model free neutron: (X,Y,Z) non-rotating frame with Z along Earth‘s rotation axis Lab-frame with quantization axis z In terms of frequency: (95% C.L.) PTB Berlin: = 52,5164 0 north = 28 0 (north-south) PRD 82 (2010) 111901
24
3 He free spin-precession signal R d SQUID parameters: p He = 1-3 mbar ; P = 10-50% R =2.9 cm; d = 6cm B = 10-30 pT Signal: Note: At present, the Xe spin coherence time T 2 * is limited to due to wall relaxation T 2 * 8 h system noise inside BMSR-2 ~ 2 fT/ Hz
25
He/Xe Clock-Comparison Experiments CPT’13 17.06.2013 25 Frequency estimation The Cramer-Rao Lower Bound (CRLB) sets the lower limit on the variance example: SNR = 10000:1, f BW = 1 Hz, T= 1 day Correction for exponential damping of signal amplitude ( T 2 * - relaxation ) T
26
BMSR 2, PTB Berlin 6 cm 3 He (4.5 mbar ) J. Bork, et al., Proc. Biomag 2000, 970 (2000). The 7-layered magnetically shielded room (residual field < 2 nT) LT c - SQUID magnetic guiding field 0.4 T (Helmholtz-coils)
27
27 1083 nm MEOP Polarizer Mainz: 3 He SEOP Polarizer PTB: 129 Xe He Xe N2N2 He/Xe Clock-Comparison Experiments CPT’13 17.06.2013
28
detector Clock based on nuclear spin precession „ spin-clock“ (ms ) signal (a.u.) (G. D. Cates, et al., Phys. Rev. A 37, 2877)
29
29 Nuclear spin properties: “First order” nuclear structure: Both nuclei have one unpaired neutron, which accounts for the nuclear spin. All other nucleons are paired with antiparallel spins 3 He and 129 Xe polarization Spin exchange with optically pumped Rb-vapour ( SEOP ) 3 He polarization Optical pumping of metastable 3 He * -atoms ( MEOP ) He/Xe Clock-Comparison Experiments CPT’13 17.06.2013
30
30 Fitting subset subset left: 2 /dof = 1.03 He/Xe Clock-Comparison Experiments CPT’13 17.06.2013
31
31 Subtraction of deterministic phase shifts He/Xe Clock-Comparison Experiments CPT’13 17.06.2013 a lin : earth rotation and chemical shift
32
32 Subtraction of deterministic phase shifts + (t) spin-coupling a : generalized Ramsey-Bloch-Siegert-Shift Magnetisation (self shift) b : Bloch-Siegert-Shift Magnetisation 2 of other spin species He/Xe Clock-Comparison Experiments CPT’13 17.06.2013
33
33 The detection of the free precession of co-located 3 He/ 129 Xe sample spins can be used as ultra-sensitive probe for non-magnetic spin interactions of type: Search for spin-dependent short-range interactions (axion like particles) Search for a Lorentz violating sidereal modulation of the Larmor frequency Search for EDM of Xenon … Observable: He/Xe Clock-Comparison Experiments CPT’13 17.06.2013
34
34 Status of the 129 Xe-EDM experiment (1)Plastic housing, filled with SF 6 ; Prototype exists (2)Glass cell with silicon lids; Prototype exists (3)High voltage electrodes with cabling; Design phase, High voltage supply with leakage current detection is under construction (4)Overall design/calculations of electric field distribution, leakage current estimates are almost finished (5) Cryostat made of carbon fibre ordered; special low temperature SQUID Gradiometers ordered He/Xe Clock-Comparison Experiments CPT’13 17.06.2013
35
Repetition of short measurements of free precession T m : measurement time Measurement of uninterrupted precession Gain in sensitivity:
36
Measurement sensitivity: 129 Xe electric dipole moment EoEo E E BoBo E E Then we will reach … after 100 days of data taking: from 2010 run: = 19 pHz @ 1 day assume : E=2 kV/cm Observable: weighted frequency difference sensitivity limit: Rosenberry and Chupp, PRL 86,22 (2001) ecm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.