Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quadratic Functions and Models ♦ ♦ Learn basic concepts about quadratic functions and their graphs. ♦ Complete the square and apply the vertex formula.

Similar presentations


Presentation on theme: "Quadratic Functions and Models ♦ ♦ Learn basic concepts about quadratic functions and their graphs. ♦ Complete the square and apply the vertex formula."— Presentation transcript:

1 Quadratic Functions and Models ♦ ♦ Learn basic concepts about quadratic functions and their graphs. ♦ Complete the square and apply the vertex formula. ♦ Graph a quadratic function by hand. ♦ Solve applications and model data. 2.1

2 Basic Concepts REVIEW: A linear function can be written as f(x) = ax + b (or f(x) = mx + b). The formula for a quadratic function is different from that of a linear function because it contains an x 2 term. f(x) = 3x 2 + 3x + 5g(x) = 5  x 2 A quadratic function is nonlinear. Leading Coefficient

3 Quadratic Function Properties The graph of a quadratic function is a parabola—a U shaped graph that opens either upward or downward. A parabola opens upward if its leading coefficient a is positive and opens downward if a is negative. The highest point on a parabola that opens downward and the lowest point on a parabola that opens upward is called the vertex. (The graph of a parabola changes shape at the vertex.) The vertical line passing through the vertex is called the axis of symmetry. The leading coefficient a controls the width of the parabola. Larger values of |a| result in a narrower parabola, and smaller values of |a| result in a wider parabola. Leading Coefficient

4 Examples of different parabolas

5 Example Use the graph of the quadratic function shown to determine the sign of the leading coefficient, its vertex, and the equation of the axis of symmetry. Leading coefficient: The graph opens downward, so the leading coefficient a is negative. Vertex: The vertex is the highest point on the graph and is located at (1, 3). Axis of symmetry: Vertical line through the vertex with equation x = 1.

6 The quadratic function f(x) =ax 2 + bx + c can be written in an alternate form that relies on the vertex (h, k). Example: f(x) = 3(x - 4) 2 + 6 is in vertex form with vertex (h, k) = (4, 6). What is the vertex of the parabola given by ? f(x) = 7(x + 2) 2 – 9 ? Vertex = (-2,-9)

7 Example Write the formula f(x) = x 2 + 10x + 23 in vertex form by completing the square. Given formula Subtract 23 from each side. Add (10/2) 2 = 25 to both sides. Factor perfect square trinomial. Subtract 2 form both sides.. Vertex is h= -5 k = -2.What is the vertex?

8 Example A well-conditioned athlete’s heart rate can reach 200 beats per minute (bpm) during a strenuous workout. Upon stopping the activity, a typical heart rate decreases rapidly and then gradually levels off. See the data table. Graphing this data we get Determine the equation of a parabola that models this data. f(x) = a(x – h) 2 + k How do we start?

9 From the description, we will take that the minimum heart rate is 80 beats per minute and that occurs when x = 8. That means the vertex is at (8, 80). So using the vertex form we have f(x) = a(x – 8) 2 + 80 How do we find the value of coefficient a? a = 1.875

10 Assignment: Pages 132 – 133 Problems: 18 – 32e; 44 – 52e


Download ppt "Quadratic Functions and Models ♦ ♦ Learn basic concepts about quadratic functions and their graphs. ♦ Complete the square and apply the vertex formula."

Similar presentations


Ads by Google