Download presentation
Presentation is loading. Please wait.
Published byMartha Elliott Modified over 8 years ago
1
M.Prasad Naidu MSc Medical Biochemistry, Ph.D.Research Scholar
2
Bio-energitics is the study of energy changes [ release or utilization ] in biochemical reactions. Reactions where energy is released are called exergonic reactions. Reactions where energy is utilized are called endergonic reactions.
3
Free energy [G] Gibb's change in free energy [ G] negative positive zero Standard free energy [ G o ] Enthalpy [ H] Entropy [ S]
4
Free energy [G] denotes the fraction total energy in the system available to do the work. Gibbs change in free energy [ G] It is the portion of free energy that is useful to do the work. Standard free energy change [ G 0 ] is the free energy change under standard conditions [ pH 7 and 1M\ L concentration]
5
Gibbs Change in free energy [ G ] predicts whether a reaction is favorable or not predicts whether a reaction is favorable or not and the energy available to do work. and the energy available to do work. 1. exergonic reactions ; negative 1. exergonic reactions ; negative 2.endergonic reactions ; positive 2.endergonic reactions ; positive 3.equilibrium reactions ; zero 3.equilibrium reactions ; zero
6
Enthalpy [H] is the measure of the change in the heat content of the system i.e. energy released or absorbed. Entropy [S] It is the fraction of enthalpy that is not available to do the work. it denotes the randomness of the products and reactants.
7
A biochemical reaction depends on the change in free energy, Enthalpy, and Entropy. G = H - T S [T= absolute temperature in Kelvin]
8
ATP is the energy currency of the cell ATP on hydrolysis yields -7.3 Kcal ATP ADP + Pi - 7.3 Kcal ATP is utilized for Active transport Nerve conduction Muscle contraction synthetic reactions
9
1.Pyro-phosphates -------------- ATP 2.Acyl phosphates -------------- 1,3-BPG 3.Enol phosphates -------------- PEP 4.phosphoguanides ------------- creatine –P 5.Thio - esters ------------- Acyl-co A the high energy bond in these compounds is called as Acid –anhydride bond
10
phopho enol pyruvate [-14.8Kcal] phospho creatine 1,3-BPG SAM ATP - 7.3Kcal ADP G-1-P F-6-P G-6-P [-3.3Kcal]
11
The electrons flow uni directionally from one carrier to the other in ETC. The carriers are reduced when they accept the electrons and get oxidized when they donate to the other carrier. the reduced and oxidized forms of the same carrier are referred as redox pairs. Redox potential is the tendency of the redox pair to donate or accept electrons. electrons always flow from negative to positive redox potential.
12
REDOX PAIRS REDOX POTENTIAL 1. NADH\NAD -0.32 2. FADH\FAD -0.12 3. H 2 O\O 2 +0.82 The ETC is arranged in the increasing order of their redox potentials.
13
All the enzymes of biological oxidation belongs to the major class of oxido-reductases. They are classified as follows 1.Oxidases 2.Oxygenases 3.Hydroperoxidases 4.dehydrogenases
14
Class Oxido reductases: 1.OxidasesEg: Cytochrome oxidase 2.Oxygenases Mono-oxygenasesEg: Cyt P 450 DioxygenasesEg: Tryptophan dioxygenases 3.Hydroperoxidases PeroxidasesEg: Glutathione peroxidase Catalases 4.Dehydrogenases AerobicEg: Xanthine oxidase Anaerobic: a.NAD linked b.FAD linked c.FMN linked
15
1.Oxidases ; these enzymes catalyze the removal of hydrogen from the substrates. Oxygen acts as acceptor of hydrogen forming water. E.g. cytochrome -oxidase,MAO A H 2 +1\2 O 2 ---------- A + H 2 O
16
2.Oxygenases 1. Mono-oxygenases [ mixed function oxidase] incorporates one oxygen atom into the substrate other is reduced to water. E.g. cyt-P 450, tyrosine hydroxylase etc. A-H + O 2 + BH 2 AOH + H 2 O +B 2. di-oxygenases incorporate both oxygen atoms into the substrate. E.g. Tryptophan dioxygenase A H + O 2 AOOH
17
3. Hydroperoxidases act on H 2 O 2. 1. peroxidase ; glutathione peroxidase AH 2 +H 2 O 2 ---------2H 2 O + A 2.catalase; 2H 2 O 2 ----------------2H 2 O +O 2
18
4.Dehydrogenases Catalyze the removal of hydrogen from the substrate. Based on the type of H 2 acceptor they are classified as follows 1. aerobic dehydrogenases oxygen is the acceptor of hydrogen. 2. anaerobic dehydrogenases coenzymes act as acceptors of hydrogen NAD + linked dehydrogenases NADP + linked dehydrogenases FAD- linked dehydrogenases
19
Aerobic dehydrogenases These are flavoproteins and the product formed is mostly hydrogen peroxide AH 2 + O 2 -------------A + H 2 O 2 E.g. xanthine oxidase, glucose oxidase etc
20
Anaerobic dehydrogenases hydrogen acceptor s are co-enzymes. When the substrate is oxidized the co- enzyme is reduced AH 2 + B ----------------A + BH 2
21
Transport of electrons from reduced substrates to O 2 is called as ETC. Site: Inner mitochondrial membrane Components: 1.Nicotinamide nucleotides [NADH + H + / NAD + ] 2.Flavo-proteins [FADH 2 / FAD+]. 3.Ubiquinone: CoQ. 4. Cytochromes: b, c 1, c, a, a 3.
22
ETC components are arranged in four complexes in the increasing order of their redox potentials from -4.2 for (NADH + H + ) to +0.82 for O 2. Complex I: NADH + H + ----- CoQ reductase. II: Succinate ----- CoQ reductase. III: Co-Q ------- Cyt C reductase. IV: Cytochrome oxidase.
24
ATPsynthase[ v ]
25
ATP synthase – Complex 5 Integral protein in the inner mitochondrial membrane. It has two units F 0 & F 1. F 0 acts as a protein channel. F 1 has ATP synthase activity.
27
1.Nicotinamide nucleotides [NADH + H + and NAD + ] 2. flavo-proteins [ FADH 2 and FAD + ]
28
3. Co- Q [ubiquinone]
29
4. cytochromes
30
P;O ratio is the number of P atoms utilized To synthesize ATP for one atom of O 2 oxidized P;O ratio for NADH + H + is ‘3’ [three sites of ATP synthesis] P;O ratio for FADH 2 is ‘2’ [two sites of ATP synthesis]
31
1. Chemical coupling: Generation of ATP at substrate level. 2. Conformational coupling: Conformational changes in the molecules in mitochondrial membrane leads to ATP generation. 3. Chemi -osmotic theory: The proton gradient generated during electron transfer is utilized for ATP synthesis.
33
Site specific : 1. NADH + H + to CoQ; 1.Rotenone 2.piericidin 3. amylobarbital 2. Cyt b to Cyt c 1 1. Antimycin 2. BAL. 3. Cyt a 3 to O 2 1. HCN 2. H 2 S 3. CO.
34
Uncouplers: 2,3 dinitrophenol, 2,3 dinitrocresol Physiological uncouplers: Large doses of 1. Unconjugated bilirubin, 2. Thyroxine 3. Aspirin 4. Long chain fatty acids. 1. Oligomycin : Blocks ATP synthase activity. 2.Atractyloside : Block the proton flow into the mitochondrial matrix.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.