Download presentation
Presentation is loading. Please wait.
Published byKerry Lane Modified over 8 years ago
1
Infrastructure for Neutrino astroparticle physics and Marine science KM3NeT
2
Start 1st February 2006 Autumn 2007: Conceptual Design Report February 2009: Technical Design Report
3
NIKHEF activities Simulation : new program Sirene Optical Module: multi PMT, cable design Read out and DAQ: “Fiber-to-the-home” Deployment: container concept Conditions price/volume: ~2x cheaper than Antares production per month, per site: 2 lines with 25 OMs each
4
Claudine Colnard, Ronald Bruijn, Paul Kooijman, Eleonora Presani, Siemen Meester
5
Flexibility Modularised: Topology of optical modules in telescope Seawater parameters Track generation PMT topology inside optical module PMT parameters (QE, Orientation, angular acceptance)
6
Empty core telescope Paul Kooijman, Maarten de Jong 2 photon hit probability > 90% eff. 1 photon hit probability > 50% eff. (~75 m) ~400 m ~700 m Muon range x area = volume
7
Multi PMT optical module HE neutrinos: –Horizontal view Background: single photons Local coincidences: clusters view same direction -> Two photon purity Esso Flykt (Photonis), Paul Kooijman, Maarten de Jong
8
Photon detection Large PMT –Slow –Analogue –Q -integrator –ADC Small PMT –Fast –Digital –Single photon counting –Time-over-threshold Paul Kooijman, Maarten de Jong
9
Segmentation Background: –Random time –Random side Signal: –Same time –Same side Paul Kooijman, Maarten de Jong
10
cos of photon Two hits in adjacent PMTs 4 x 10” 36 x 3.5” 3 x 10” (Antares)
11
PMT topology in OM Herman Boer Rookhuizen 19 PMTs (3”) in a half sphere (17”) including tube electronics on foot
12
Optical module Hans Kok 20 x 3” PMTs in foam suspension
13
Optical module Hans Kok Room for electronics in centre
14
“Contact lens” Hans Kok RTV silicon GE615 Connection PMT with glass
15
Cooling Up to 5W using only convection – above that harder and need contact with the glass Hans Kok Central electronics
16
HV supply On foot of the PMT Optimizing HV and power behaviour At present: 15mW HV + 15 mW for amp + 15mW comparator New PCB design Preparing long term behaviour studies LT1617-1 comp - + K D1 D2 D8 D9 A 3V3 Q Q\ in out Paul Timmer, Lex Kruijer
17
OM0 OM1 OM2 Compass_MB ARS_MB OM0 ARS_MB OM1 ARS_MB OM2 ARS_MB LB)* DAQ/SC INSTR CLOCK MLCM_DWDM SWITCH BIDICON Preamp* RX_DSP* RX_CPU* MLCM specific at the sea bottom OM_0 OM_1 OM_2 Line equipment, infrastructure etc. DWDM shore stations CLOCK gen. GbE switches computer farm commercial Instrumentation LCM specific Acoustic Titanium cylinder ANTARES read out/DAQ architecture Jelle Hogenbirk
18
Time stamping Off-shore TDC –Distributed clock system Master clock Network Many slave clocks –A-synchronous readout On-shore TDC –Local clock system Master clock ‘smart TDC’ –Synchronous readout Maarten de Jong
19
DAQ vertical cabling options All fibers Event time stamp on shore Very high speed data communication Minimal electronics off shore Real time data communication Dead-timeless All Cu Event time stamp off shore at each floor Moderate to high speed data communication Complicated electronics off shore Store and forward data communication Based on fiber-to-home (FTTx) developments in telecom
20
2.. n 1.. n General diagram photonic-Cu mix <100Mbps 10kV/400V Ref: Catania 400/48V 3Gbps LINE 1 apd ADM 1 logic 30:1 mux vdsl2 48V/3.5 logic 1.. 32 x c PMT c OM 1 Vertical Cable VDSL2 Main cable GPS rec. Shore station laser 1..n 1 n Clock apd clck-sc-cal. data GbE Copper Logics CPUs Power apd 1:n 1.. n branch equivalent 10kV JB branch Anchors LINE 2..n n = number of lines on 10kV branch (<60) Branch cable: n x in one fibre, 1 x 10kV power line m branches Main cable: m fibres, 1 x 10kV power line m = number of branches vdsl2 OM 2..30 Henk Peek, Peter Jansweijer, Eric Heine
21
General diagram “all optical” GPS rec. 1.. 16 x Shore station c PMT Optical module c laser 1..n 2 n+1 1> 2 1+ 2 n+ n+1 data ~30 x Clock apd clck-sc-cal. data GbE Copper Logics CPUs Power ~16 x Power apd Clock cal ½ns serdes Production model Independent manufacturing Single Fibre per line Jelle Hogenbirk, Sander Mos, Mar vd Hoek, TU/e
22
Electronic-photonic front end From PMT’s 0214515 I 0 I 1 I x identifier DDDDDDDDDDD All = one optical pulse serialized output after optical trigger electric output to optical modulator 2R or 3R ? modulator unit CW + clk pulse 3 15 1,6 nsec 3,2 nsec I 0 I 1 I x 0 1 2 3 4 5 Puls det & gain flattening ~ 7ns 16 PMT’s and 4 identifiers => 20 data bits. Optical trigger repetition rate: 1,6 nsec 3,2 nsec 80 160 psec sample pulse width. If “D” delay 100 psec then the system adapts to 10Gbit/sec optical transmission technology. e.g. every 2 nsec Jelle Hogenbirk, Sander Mos, Mar vd Hoek, TU/e
23
Mar vd Hoek
25
Herman Boer Rookhuizen Thoughts on deployment Container could –House reel cable so it can be connected to test. –House light-diodes for testing, before/after deployment. –Made of fiberglass? –Fit in a standard shipping container.
26
Test basin EMIN experiment hall accelerator building Water basin 8.5m x 10mØ Features: OM characterisation LINE tests Edward Berbee
27
KM3NeT and ESFRI FP7 proposal for Preparatory Phase: –Establishment of legal entity, governance, commitment of ministries and/or funding agencies –Site selection –(some) prototyping –Max 7 MEuro –Deadline proposal May 2007 –Start early 2008
28
KM3NeT@NIKHEF Physicists: Ronald Bruijn, Claudine Colnard, Maarten de Jong, Paul Kooijman, Siemen Meester, Eleonora Presani, Gerard vd Steenhoven, Els de Wolf Engineers: Herman Boer Rookhuizen, Edward Berbee, Eric Heine, Mar vd Hoek, Jelle Hogenbirk, Peter Jansweijer, Rob Klopping, Hans Kok, Lex Kruijer, Sander Mos, Henk Peek, Paul Timmer
30
Production model 20-30 x ANTARES -> ~350 sensor lines ~35 calibration lines Total ~ 400 lines 25 stories -> ~6000 OMs 3 year: ~100 lines/yr -> ~2000 OM/yr 5 sites: ~20 lines/site/yr -> ~400 OM/site/yr Per month/per site: ~2 lines, 30 OMs -> Design efficient production model
31
Custom KM3Net VDSL2 Channel VTU-O (VDSL-2 Transceiver Unit At ONU (Optical Network Unit)) AN (Acces Node) LPF 0.025- 30 MHz Broadband Network BPF Copper Pair VTU-R (VDSL-2 Transceiver Unit- Remote side) NT (Network Termination) Reference Oscillator LPF 0.025- 30 MHz BPF DC Power Timing Reference Rate/Reach performance 100 Mbit/s over 500 meters Henk Peek, Peter Jansweijler, Eric Heine
32
1 2 Two with overlap Shower? Late hit? 0 7 8 10 9 12 11 Single photon pulse : Typ 5 nsec (Min 2 nsec and 7 nsec post ampl.) 1 nsec PMT number time 7 nsec 15 Random or first? PMT outputs of a typical event in a OM ~ 7ns Time over threshold single photon pulse (3.5 “ PMT)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.