Download presentation
Presentation is loading. Please wait.
Published byFrederica Hudson Modified over 8 years ago
1
1 논리공학 고려대학교 전기전자전파공학부 김종국
2
2 1 or 0, yes or no, true or false … 디지털 시스템을 위한 기초 거의 모든 전기전자제품은 디지털 시스템 e.g., 핸드폰, 전자시계, 컴퓨터 … 이진수 필요성 십진수에서 이진수 변환 불 대수 논리회로 설계 (combinational circuits) 논리회로 간소화 / 최적화 논리 공학
3
3 자동판매기 (vending machine)? 논리 공학 input ( 입력 ) output ( 출력 ) ?
4
4 이진수 a 5 a 4 a 3 a 2 a 1 a 0.a -1 a -2 a -3 = a n r n +a n-1 r n-1 +...+a 2 r 2 +a 1 r+a 0 +a -1 r -1 +a -2 r -2 +...+a -m r -m (power series) 7392 = 7 × 10 3 + 3 × 10 2 + 9 × 10 1 +2 × 10 0 (11010.11) 2 = 2 10 2 20 2 30 = 1Kilo = 1Mega = 1Giga
5
5 101101 1011 +10011 1 -100111×101 101010 0 0001101011 0000 1011 110111 이진수
6
6 수체계 변환 베이스 r 수에서 십진수로 변환 Power series 를 이용 Term 들을 더함 (11010.11) 2 = 1×2 4 +1×2 3 +0×2 2 +1×2 1 +0×2 0 +1×2 -1 +1×2 -2 = (26.75) 10 십진수에서 베이스 r 수로 변환 정수 부분과 소수 부분을 따로함 정수 부분 : 숫자를 베이스 r 로 나누고 이후 몫을 다시 r 로 나누고 나머지를 읽으면 됨 소수 부분은 ? (41.6875) 10 = (?) 2 (153.513) 10 = (?) 8
7
7 수체계 변환 Ex 1-1) Convert decimal 41 to binary. answer : (41) 10 = (a 5 a 4 a 3 a 2 a 1 a 0 ) 2 = (101001) 2 Integer Quotient RemainderCoefficient 41/2 =20+½a 0 = 1 20/2 =10+0a 1 = 0 10/2 =5+0a 2 = 0 5/2 =2+½a 3 = 1 2/2 =1+0a 4 = 0 1/2 =0+½a 5 = 1 IntegerRemainder 41 20 1 10 0 5 0 2 1 1 0 0 1 answer = 101001
8
8 Ex 1-2) Convert decimal 153 to octal. Ex 1-3) Convert (0.6875) 10 to binary. 수체계 변환 153 191 23 02 = (231) 8 IntegerFractionCoefficient 0.6875×2 =1+0.3750a -1 = 1 0.3750×2 =0+0.7500a -2 = 0 0.7500×2 =1+0.5000a -3 = 1 0.5000×2 =1+0.0000a -4 = 1 answer:(0.6875) 10 = (0.a -1 a -2 a -3 a -4 ) 2 = (0.1011) 2
9
9 수체계 변환 (41.6875) 10 = (101001.1011) 2 (153.513) 10 = (231.406517) 8
10
10 Binary Logic definition of binary logic logic gates
11
11 Theorems and Properties of Boolean Algebra operator precedence 1. parentheses 2. NOT 3. AND 4. OR
12
12 Boolean Algebra commutative law: the order doesn’t affect the result X + Y = Y + X XY = YX associative law: parentheses can be removed (X + Y) + Z = X + (Y + Z ) (XY)Z = X(YZ) distributive law: X(Y+Z) = XY + XZ X + YZ = (X + Y)(X + Z) DeMorgan’s theorem: complement of an expression (X + Y) = XY (XY) = X + Y can be extended to three or more variables
13
13 Boolean Functions
14
14 Simplification (Minimization)?
15
15 ex 2-1) Simplify the following Boolean functions to a minimum number of literals. 1. x(x'+y) = xx' + xy = 0 + xy = xy. 2. x +x'y = (x+x')(x+y) = 1(x+y) = x + y. 3. (x+y)(x+y') = x + xy + xy' + yy' = x(1+y+y') = x. 4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + xyz + x'yz = xy(1+z) + x'z(1+y) = xy + x'z Boolean Functions – Algebraic Manipulation
16
16 (A + B + C)'= (A+x)' let B+C=x = A'x' by theorem 5(a)(DeMorgan) = A'(B+C)' substitute B+C=x = A'(B'C') by theorem 5(a)(DeMorgan) = A'B'C' by theorem 4(b)(associative) => (A+B+C+D+…+F)' = A'B'C'D'…F' (ABCD…F)' = A' +B'+ C' + D' + … + F' Complement of a Function
17
17 ex 2-2) Find the complement of the functions F 1 =x'yz'+x'y'z, F 2 =x(y'z'+yz). F 1 ' = (x'yz'+x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z') F 2 ' = [x(y'z'+yz)]' = x'+(y'z'+yz)' = x'+(y'z')'(yz)' = x'+(y+z)(y'+z') ex 2-3) Find the complement of the functions F 1 And F 2 in Ex 2-2 by taking their duals and complementing each literal. 1. F 1 = x'yz' + x'y'z. The dual of F 1 is (x'+y+z')(x'+y'+z) Complement each literal : (x+y'+z)(x+y+z')=F 1 ' 2. F 2 = x(y'z'+yz). The dual of F 2 is x+(y'+z')(y+z) 이다. Complement each literal : x'+(y+z)(y'+z')=F 2 ' Complement of a Function
18
18 Simplification Example F = XYZ + XYZ + XY = XZ(Y + Y) + XY = XZ + XY circuit simplification less gates (a) 2 NOT, 3 AND, and 1 OR (b) 1 NOT, 2 AND, and 1 OR less fan-in
19
19 Minterm and Maxterm (1) minterm ( a product term) and Maxterm (a sum term) all variables appear exactly once, either complemented or uncomplemented show exactly one combination of the binary variables 2 n distinct terms for n variables
20
20 Minterm and Maxterm (2) minterm term: x, y, z are such values, when do they give us 1? maxterm term: x, y, z are such values, when do they give us 0? j is the designation number for terms: M j = m j c m 3 = (XYZ) = X + Y + Z = M 3
21
21 f 1 = x'y'z+xy'z'+xyz = m 1 +m 4 +m 7 f 2 = x'yz+xy'z+xyz'+xyz = m 3 +m 5 +m 6 +m 7 f 1 = (x+y+z)(x+y'+z)(x'+y+z')(x'+y'+z) = M 0 M 2 M 3 M 5 M 6 f 2 = (x+y+z)(x+y+z‘)(x+y'+z)(x'+y+z) = M 0 M 1 M 2 M 4 Canonical and Standard Forms
22
22 conversion between canonical forms F(A, B, C) = ∑(1, 4, 5, 6, 7) F' (A, B, C) = ∑(0, 2, 3) = m 0 + m 2 + m 3 F = (m 0 +m 2 +m 3 )' = m 0 'm 2 'm 3 ' = M 0 M 2 M 3 = ∏(0, 2, 3), m j ' = M j ex) F = xy + x'z F(x, y, z) = ∑(1, 3, 6, 7) F(x, y, z) = ∏(0, 2, 4, 5) Canonical and Standard Forms
23
23 Gray Code gray code of three variables 1 bit difference between neighbors convert from the lower bit order if the converted binary number already exists, then try to convert the bit that is one higher
24
24 Karnaugh Map (K-Map) simplify Boolean functions of up to four variables (5 or 6 variables can be drawn, but cumbersome to use) simplified expressions are in sum-of-products or product-of- sums (two-level implementations) diagram of squares, one indicating one minterm
25
25 Karnaugh Map (K-Map) Algorithm pick the largest 2 n element group (n = 0, 1, …) the already-grouped element can be regrouped for another group all elements in a group cannot be a member of another group
26
26 Two-Variable Map m1+m2+m3 = x'y +xy' +xy = x +y
27
27 Three-Variable Map
28
28 Three-Variable Map Examples
29
29 Four-Variable Map
30
30 Four-Variable Map Examples Ex 3-5) Simplify the Boolean function, F(w, x, y, z) = Σ(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)
31
31 Product-of-Sum from sum-of-products to product-of-sums complement the function (taking the dual) combine squares marked with 0’s change the function, which was expressed in sum-of- products to product-of-sums
32
32 Product of Sums Simplification ex 3-8) Simplify the Boolean function, F(A, B, C, D) = Σ(0, 1, 2, 5, 7, 9, 10) a) sum of products F = B'D' + B'D' +A'C'D' b) product of sum F' = AB + CD + BD' F = (A' +B')(C' +D')(B' +D)
33
33 F( x, y, z) = Σ(1, 3, 4, 6) = Π(0, 2, 5, 7) F = x'z +xz' F' = xz +x'z' F = (x'+z)(x + z') Product of Sums Simplification
34
34 So Far… simplification Boolean algebra K-map group 1’s: sum-of-products (minterms) group 0’s: product-of-sums (maxterms)
35
35 Don’t care condition unspecified minterms of a function marked with a cross or a “d” provides further simplification of the function “d” can become 0 or 1
36
36 Don’t-Care Conditions Example ex 3-9) Simplify the Boolean function, F(w, x, y, z) = Σ(1,3,7,11,15) Don’t-care conditions, d(w, x, y, z) = Σ(0, 2, 5) F(w, x, y, z) = yz + w'x' = Σ(0, 1,,2, 3, 7, 11, 15) F(w, x, y, z) = yz + w'z = Σ(1, 3, 5, 7, 11, 15)
37
37 Extension to Multiple Inputs - The NAND and NOR operators are not associative. (x↓y)↓z≠x↓(y↓z) (x↓y)↓z= [(x+y)'+z]' = (x+y)z'= xz' + yz' x↓(y↓z)= [x+(y+z)'] ' = x'(y+z)= x'y + x'z x↓y↓z= (x+y+z)' x↑y↑z= (xyz)' Digital Logic Gate F = [(ABC)'(DE)']' = ABC + DE
38
38 NAND Implementation NAND Circuit
39
39 F = ((AB)'(CD)')' = AB + CD ex 3-10) Implement the following Boolean function with NAND gates: F(x, y, z) = Σ(1, 2, 3, 4, 5, 7) = xy' + x'y + z NAND Implementation
40
40 NAND Implementation
41
41 NOR Implementation F = (AB' + A'B)(C + D')
42
42 Exclusive-OR Function x y = xy' + x'y (x y)' = (xy' + x'y)' = xy + x'y' x 0=x x 1=x' x x=0 x x'=1 x y'=x' y=(x y)‘ A B = B A (A B) C = A (B C) = A B C
43
43 parity generation and checking P = x y z C = x y z P Exclusive-OR Function Application
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.