Download presentation
Presentation is loading. Please wait.
Published byCornelius Johnson Modified over 8 years ago
1
Atomic Collision Calculations for Astrophysics Dr Cathy Ramsbottom
5
Modelling CLOUDY CHIANTI XSTAR Radiative Data (f- and A- values, energy levels, wavelengths) Collision data (cross sections, excitation rates, recombination rates, proton rates)
6
What is an Atomic Collision: Elementary Particle + Atomic System electron/photon + atom/ion/molecule Atomic System + Atomic System atom/ion/molecule + atom/ion/molecule
7
Types of Collisions: Consider an elementary particle A and an atomic system B A + B A + B Elastic Scattering A + B A + B’ Inelastic Scattering A + B C + D + E + F + …….X Reactions
8
Atomic Processes Radiative Transitions * Electron-ion collisions Photoionization/recombination * Proton-ion collisions Charge exchange Atom-ion collisions Bremsstrahlung * Two-photon emission *
9
Atomic Processes Radiative Transitions * Electron-ion collisions Photoionization/recombination * Proton-ion collisions Charge exchange Atom-ion collisions Bremsstrahlung * Two-photon emission *
10
The Collision Cross Section: The results of any atomic collision are usually expressed in terms of quantities called `cross sections’. The cross section is a measure of the probability that a given type of collision will occur under given conditions. Nature of the particles The reaction being considered The mutual velocity of approach of the colliding partners The impact parameters
11
Resonances A resonance is in very simplistic terms a `preferred route of nature’ represented by sharp peaks or spikes on an otherwise smooth background. Autoionizing Resonances Near-threshold Shape Resonances Feshbach Resonances
13
Photoionization of Helium hν + He(1s 2 1 S) e - + He + He*(2s2p 1 P o )
15
In Summary: Autoionizing resonances are caused by the radiationless decay of the doubly-excited levels of atoms and ions. Because the finite lifetime of these levels is quite long, the corresponding ‘peaks’ are sharp and narrow.
16
Shape Resonances Electron scattering of Nitrogen e - + N(1s 2 2s 2 2p 3 4 S o ) e - + N(1s 2 2s 2 2p 3 4 S o ) N*(1s 2 2s 2 2p 4 3 P)
18
In Summary: Shape resonances are caused by the temporary capture of the incident particle during the collision process. They are generally found on or just above threshold. They are mostly short-lived and hence appear in the cross section as broad peaks.
19
Feshbach Resonances Photoionization of Nitrogen e - + N(1s 2 2s 2 2p 3 2 D o ) e - + N + N*(1s 2 2s 2 2p 4 2 P)
24
Configuration Interaction Wavefunction In LS coupling the expansion of the total wavefunction Ψ is given by
25
In Summary: The study of atomic collisions can conveniently be divided into two parts: Firstly, it is necessary to obtain wavefunctions which describe the target atomic bound states. Secondly, these wavefunctions must be incorporated into a description of the complete collision problem.
26
The R-matrix Method
27
The non-rel SE describing the scattering of an electron by an N- electron atom or ion with nuclear charge Z is defined by Where the (N+1)-electron Hamiltonian H (N+1) is given the atomic units by
28
Internal Region In the internal region the total collision wavefunction Ψ is represented as a configuration interaction expansion over a set of (N+1)-electron basis functions where
29
External Region In the external region the boundary radius is chosen so that electron exchange between the scattered electron and the target vanishes. The total collision wavefunction can then be expanded as The solution of the SE in each region is determined independently and the R-matrix then links the solutions on the boundary r=a
30
The R-matrix The R-matrix, first introduced by Wigner in (1946) in an analysis of nuclear resonance reactions, is defined by where the surface amplitudes ω ik are given by
31
Observables The collision strength, Ω ij, for each transition and energy can be calculated from the scattering (or S-matrix) using the following formula where g=(2L+1)(2S+1) in LS coupling and (2J+1) in intermediate or jj coupling. The collision strength is related to the cross section σ ij through the relation
32
The collision strength may be averaged over a Maxwellian distribution of electron velocities to produce a smooth curve of effective collision strengths for the temperature range of interest. Where T e is the electron temperature in K, k B is Boltzmann constant and E f is the final energy of the electron.
33
The non-rel SE describing the scattering of an electron by an N- electron atom or ion with nuclear charge Z is defined by Where the (N+1)-electron Hamiltonian H (N+1) is given the atomic units by
34
Relativistic Effects 1 The Breit-Pauli Hamiltonian is suitable for light to medium ions where only first order relativistic effects need to be considered. The complete relativistic Breit- Pauli Hamiltonian is defined as follows:
35
Relativistic Effects 2 In heavier systems, where it is essential to include all relativistic effects, the Dirac Hamiltonian must be adopted. where c is the speed of light, p i is the momentum and α and β are given by where σ are the usual Pauli spin matrices
36
R-matrix Methodologies: RMATRX I (LS coupling) BP RMATRX I DARC RMATRX II (LS + transformation) ICFT (LS + transformation) B-spline R-Matrix BSR
37
Cr II 3d 5 6 S 5/2 – 3d 4 4s 6 D 1/2 Wasson IR, Ramsbottom CA & Scott MP, 2010, a&A, 524,A35
38
Cr II 3d 5 6 S 5/2 – 3d 4 4s 6 D 1/2,3/2,5/2,7/2,9/2 Wasson IR, Ramsbottom CA & Scott MP, 2010, a&A, 524,A35
39
Mn V 3d 3 4 F 3/2 – 3d 3 2 D2 5/2 Grieve MFR, Ramsbottom CA, Hibbert A, Ferland G & Keenan FP, in preparation
40
Mn V 3d 3 4 F 3/2 – 3d 3 2 D2 5/2 Grieve MFR, Ramsbottom CA, Hibbert A, Ferland G & Keenan FP, in preparation
41
Mg VIII 2s 2 2p 2 P o 1/2 – 2p 3 2 P o 3/2
42
W XLV BP –present DARC 2007 DARC 2015
43
W XLV BP –present DARC 2007 DARC 2015
44
W XLV BP present RMATRX II
45
W XLV BP present RMATRX II
46
W XLV BP present RMATRX II
48
Chianti Database Version 7.1.3
49
Fe II The Rosetta Stone Element
51
Model LSπJπ No. ConfigsStatesChannelsStatesChannels 1247263420 2329882540 31003152621800 41163632992052 52618057165076 62858777795496 7389123910557596 No. Target States Max No. Channels Max size (N+1) H matrix Total No. Transitions 100 (LSπ)31512 6605050 262 (Jπ)180036 05534 453 716 (Jπ)5076> 100 000256 686
52
Model LSπJπ No. ConfigsStatesChannelsStatesChannels 1247263420 2329882540 31003152621800 41163632992052 52618057165076 62858777795496 7389123910557596 No. Target States Max No. Channels Max size (N+1) H matrix Total No. Transitions 100 (LSπ)31512 6605050 262 (Jπ)180036 05534 453 716 (Jπ)5076> 100 000256 686
53
Fe II 3d 6 4s 6 D 9/2 – 3d 6 4s 6 D 7/2 Ramsbottom CA, Hudson CE, Norrington PH & Scott MP, 2007, A&A, 475, 765
54
Fe II 3d 6 4s 6 D 9/2 – 3d 6 4s 6 D 5/2 Ramsbottom CA, Hudson CE, Norrington PH & Scott MP, 2007, A&A, 475, 765
57
Cloudy Models
59
Leighly KM, Halpern JP, Jenkins EB & Casebeer D, 2007, ApJSS, 173, 1
60
Fe II The Rosetta Stone Element
61
Latest Calculation from QUB 262 LS or 716 Jπ target states with configs 3d 6 4s, 3d 7, 3d 6 4p, 3d 5 4s 2, 3d 5 4s4p Last target threshold approximately 23eV Breit-Pauli + DARC treatments Target energies shifted to NIST where possible Highly applicable to recent quasar studies
62
Thank You
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.