Download presentation
Presentation is loading. Please wait.
Published byWinfred Dickerson Modified over 8 years ago
1
Dan Couch Olympia, WA DNR January, 2016
2
Outline Rogue Valley LiDAR Background Stand Metrics Comparison Results: LiDAR vs Timber Cruise BLM Forest Inventory Implications
3
Rogue Valley LiDAR Ref: OLC Rogue River – LiDAR Remote Sensing Data Final Report Flown in 2012
4
LiDAR BLM Sample Plot Development Ref: Rogue Valley BLM Stratified LIDAR Sample Plot Methodology
5
Steps to Derive Stand Metrics LiDAR Bins 75 foot pixels Correlation Plot Tree Data Harvest Unit Polygons Basis of comparison
6
Principle Components Analysis 80 th Percentile Height 80% of LiDAR height returns below this point above 10’ Six fixed height classes (~30 ft) Highly accurate height predictions Total Cover % Three equal width density classes Low, Moderate, High LiDAR
7
18 Bins (Strata) 6 Height Classes 3 Density Classes Low Med High
8
Correlation Plot Tree Data ~13 Plots per Bin (strata) ~42 foot radius 240 Plots, measured 2013 Trees counted & measured Trees less than 6.5” DBH not sampled Ref: Rogue Valley LIDAR Inventory Plot Establishment – Inventory Report
9
LiDAR Derived Stand Metrics Raster 75 foot pixel (8 th ac) data coverage by metric Height (BA-weighted) Basal area (BA) Density (TPA) Avg diameter at breast height (QMD) Volume (ft 3 per acre) Canopy cover (%) Ref: Rogue Valley LIDAR-assisted Inventory - 2015 Final Report to BLM
10
Regression Model Predictions Description Forest variable (live trees >=6.5” DBH) LiDAR Raster Labels live hardwood & softwood (hs) trees >= 6.5” DBH (6in) R2R2 BA-weighted heightLLOR (ft) LLOR_hs_6in 0.91 Basal areaLBA (sqft/ac) LBA_hs_6in 0.70 DensityLDEN (TPA) LDEN_hs_6in 0.63 Quadratic mean diameterLQMD (in) LQMD_hs_6in 0.72 VolumeLVOL (cuft/ac) LVOL_hs_6in 0.79 Canopy CoverPC_1 st (% > 6.6’) PC_1st N/A Height related predictors best fit Stem density (TPA) worst fit
11
LiDAR Stand Metrics Compared to Timber Cruise
12
Comparing LiDAR & Timber Cruise White Castle 9 Units – Timber Cruised 2012 High degree of accuracy – BA, TPA, QMD, Vol Count included retention trees Good comparison of stand metrics Spatial unit GPS’d to high accuracy Canopy cover NOT compared
13
Comparing LiDAR & Timber Cruise In GIS, LiDAR pixelated metrics interesected and averaged for each White Castle unit BA, TPA, QMD, Vol summarized by unit. LiDAR Ft 3 volume converted to MBF by factor of 6.
14
LiDAR vs Timber Cruise Results Quadratic Mean Diameter (DBH) Unit #AcresCruise/Retain QMDLidar QMDQMD Difference% Diff 132.612.813.4-0.6-5% 212.513.413.7-0.3-2% 3 & 413.613.913.70.21% 56.513.614.4-0.8-6% 615.814.214.9-0.7-5% 7**27.712.813.1-0.3-2% 87321.617.93.717% 92.917.319.2-1.9-11% Avg -0.1-2%
15
LiDAR vs Timber Cruise Results Basal Area Unit #AcresCruise/Retain BA/AcLidar BA/AcBA Difference% Diff 132.61621451710% 212.51651362918% 3 & 413.61851642111% 56.52011663517% 615.82251844118% 7**27.71591392013% 8732662273915% 92.930129293% Avg 2613%
16
LiDAR vs Timber Cruise Results Volume (MBF/Ac) Unit #Acres Cruise/Retain Short Log Vol/Ac (MBF) Lidar Converted* Vol/Ac (MBF) MBF Vol/Ac Difference % Diff 132.627.229.2-2.0-7% 212.526.9 0.00% 3 & 413.629.833.7-3.9-13% 56.533.929.14.814% 615.839.341.1-1.7-4% 7**27.729.827.22.69% 87363.459.04.37% 92.970.780.1-9.5-13% Avg -0.7-1%
17
LiDAR vs Timber Cruise Results Trees Per Acre Unit #AcresCruise/Retain TPA/AcLidar TPA/AcTPA Difference% Diff 132.618117563% 212.5168156127% 3 & 413.6174178-4-2% 56.52001712915% 615.82061763015% 7**27.7179165148% 873105151-46-44% 92.91841632111% Avg 82%
18
BLM Forest Inventory Implications
19
BLM Micro*Storms Application Western Oregon BLM’s corporate forest data repository and application for: Forest Vegetation (FOI-VEG) Forest Surveys Forest Treatments BURN REVEG - PLANT HARVEST
20
FOI-VEG vs Treatments/Surveys FOI-VEG Describes BLM Forest Vegetation Entire Western Oregon Coverage Polygon Overlap Not Allowed Treatments/Surveys Overlap
21
FOI-VEG – Forest Vegetation Data Structure
22
FOI-VEG Published Version ID, Geographic Ref, Acres (Unit # - Twnshp, Rg, Section) Forest Stand Description (Spp, size class, density, birth yr) Need stand exams for spp mix Forest Stand Metrics (Stand level regardless of spp) Independent from stand description Can use LiDAR for stand by stand metrics Attributes For Each Forest Stand
23
FOI-VEG Published Version ID ReferenceLayers AttributesStand Attributes OI_KEYCLASSIFIERGIS ACRESSTAND_DESC AGECLS BYR AGECLS 10 LYR_SRCLYR_SRC_DTCANOPYCOVTPA7QMD7BA7MBF_ACSTAND_SRCSTAND_SRC_DT 43348 Person Importing LiDAR Stand Metrics 32.6FCO D3H3-=1950195060Stand Exam-EcoSurvey8/25/20109117513.414529.2LiDAR12/31/2013 1032212.5FCO D4-1780/D3H3=1940194070Stand Exam-EcoSurvey8/24/20108615613.713626.9LiDAR12/31/2013 1032613.6FCO D4-1890/D3H2=1950195060Stand Exam-EcoSurvey9/1/20108717813.716433.7LiDAR12/31/2013 100166.5FCO D4-1780/D3D2-=19201920100Stand Exam-EcoSurvey9/2/20109217114.416629.1LiDAR12/31/2013 1001615.8FCO D4-1780/D3D2-=19201920100Stand Exam-EcoSurvey8/25/20109517614.918441.1LiDAR12/31/2013 1030927.7FCO D4-1780/D3D2-=19201920100Stand Exam-EcoSurvey8/25/20109016513.113927.2LiDAR12/31/2013 4370673FCO D4-1780/D3D2-=19201920100Stand Exam-EcoSurvey8/18/20109015117.922759.0LiDAR12/31/2013 100422.9FCO D4H3-=1910/H2=1973/H1-20061910110Stand Exam-EcoSurvey8/9/20109816319.229280.1LiDAR12/31/2013 Resulting changes from importing LiDAR stand metrics.
24
QUESTIONS?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.