Download presentation
Presentation is loading. Please wait.
Published byEverett Small Modified over 8 years ago
1
Použití katalyzátorů na bázi nanomateriálů Tato přednáška vznikla v rámci rozvojového projektu MŠMT 2016/C25 Synergetický efekt sdílení kapacit výuky z oblasti uplatnění pevných materiálů v heterogenní katalýze a fotokatalýze: od přípravy materiálů a jejich charakterizaci, po návrh reaktorů a dopad využití pevných materiálů na životní prostředí (SESKUPIT) RNDr. Michal Řezanka, Ph.D.
2
Nano-catalysts 2 IntroductionIntroduction Gold nanoparticlesGold nanoparticles Magnetic nanoparticlesMagnetic nanoparticles Mesoporous silicaMesoporous silica NanofibersNanofibers
3
Nanomaterials Gawande M. B. et al. Coord. Chem. Rev. 2015, 288, 118–143. 3
4
Nanomaterials one dimension < 100 nm (1 m) Amin, M. T. et al. Adv. Mater. Sci. Eng. 2014, 825910. 4
5
Nanomaterials https://ninithi.files.wordpress.com/2015/07/nanomataterials.jpg 5
6
NPs preparation 6 Zahmakıran, M. et al. Nanoscale, 2011, 3, 3462–3481.
7
Nanoparticles (NPs) Ag nanocarrot Liang, H.-Y. et al. Front. Phys. 2016, 11, 117301. Sajanlal P. R. et al. Nano Rev. 2011, 2, 5883. Ag nanorice 100 nm Au nanoparticles Au nanoshapes Au nanocages Au nanoframes 7
8
Surface of NPs 8 http://www.nano.gov/sites/default/files/nanocubes.jpg https://upload.wikimedia.org/wikipedia/commons/5/51/California_Memorial_Stadium_aerial.jpg
9
Surface atoms 10 nm 9 Klabunde, K. J. et al. J. Phys. Chem. 1996, 100, 12142–12153. Rao, C. N. R. et al. Chem. Eur. J. 2002, 8, 28–35.
10
AuNPs preparation Daniel, M.-C. et al. Chem. Rev. 2004, 104, 293–346. Liz-Marzán L. M. Chem. Commun. 2013, 49, 16–18. Turkevitch in 1951 Brust-Schiffrin in 1994 10
11
AuNPs as catalysts Takale, S. et al. Org. Biomol. Chem. 2014, 12, 2005–2027. 11
12
Mitsudome, T. et al. Green Chem. 2013, 15, 2636–2654. 12 AuNPs as catalysts Reduction by H 2
13
Mitsudome, T. et al. Green Chem. 2013, 15, 2636–2654. 13 AuNPs as catalysts Reduction by H 2
14
Mitsudome, T. et al. Green Chem. 2013, 15, 2636–2654. 14 AuNPs as catalysts Reduction by H 2 Hydrotalcite (HT) – layered double hydroxide of general formula Mg 6 Al 2 CO 3 (OH) 16 ·4(H 2 O)
15
AuNPs as catalysts Zhang, Y. et al. Chem. Rev. 2012, 112, 2467–2505. 15 Reduction by H 2
16
AuNPs as catalysts Tsunoyama, H. et al. J. Am. Chem. Soc. 2009, 131, 7086–7093. 16 Oxidation by O 2
17
AuNPs as catalysts Zhang, Y. et al. Chem. Rev. 2012, 112, 2467–2505. 17 Oxidation by O 2
18
AuNPs as catalysts Zhang, Y. et al. Chem. Rev. 2012, 112, 2467–2505. 18 Oxidation by O 2
19
Nanoporous gold (NPG) Zhang, X. et al. Catal. Sci. Technol. 2013, 3, 2862–2868. 19
20
NPG as catalyst Zhang, X. et al. Catal. Sci. Technol. 2013, 3, 2862–2868. 20
21
NPG as catalyst Takale, S. et al. Org. Biomol. Chem. 2014, 12, 2005–2027. 21 Oxidation by O 2
22
Zhang, X. et al. Catal. Sci. Technol. 2013, 3, 2862–2868. 22 Oxidation by O 2 NPG as catalyst
23
Zhang, X. et al. Catal. Sci. Technol. 2013, 3, 2862–2868. 23 NPG as catalyst
24
24 Magnetic NPs (MNPs) 2 Fe 3+ + Fe 2+ + 8 OH − → Fe 3 O 4 + 4 H 2 O http://www.rcptm.com/cs/produkty-a-sluzby/nabidka-produktu/products-of-magnetic- functionalized-nanomicro-particles-of-iron-oxides-for-bioapplications/
25
25 Enzyme-functionalized MNPs Vaghari, H. et al. Biotechnol. Lett. 2016, 38, 223–233. EnzymeNanoparticlesApplications -amylase Fe 3 O 4 @ cellulosedegradation of starch cellulase-COOH functionalized Fe 3 O 4 green synthesis of cellulosic ethanol cholesterol oxidase -Fe 2 O 3 @ SiO 2 @ APTES analysis of total cholesterol in serum lipase from Thermomyces lanuginosa amino-functionalized Fe 3 O 4 enzymatic transesterification of soybean oil papainFe 3 O 4 @ SiO 2 juice clarification trypsinamino-functionalized Fe 3 O 4 proteomic analysis chitosanaseFe 3 O 4 @ amyloseproduction of chitosan oligosaccharides
26
26 Catalyst-functionalized MNPs Dalpozzo, R. Green Chem. 2015, 17, 3671–3686.
27
27 Catalyst-functionalized MNPs Dalpozzo, R. Green Chem. 2015, 17, 3671–3686. Glutathione-MNPs for Huisgen 1,3-dipolar cycloadditions
28
28 Catalyst-functionalized MNPs Cheng, T. et al. Green Chem. 2014, 16, 3401–3427.
29
Mesoporous silica Hoffmann, F. et al. Angew. Chem. Int. Ed. 2006, 45, 3216-3251. 29
30
Mesoporous silica 30 Gawande, M. B. et al. Coord. Chem. Rev. 2015, 288, 118–143. Rostamnia, S. et al. RSC Adv. 2014, 4, 28238–28248.
31
Mesoporous silica Roy, S. et al. J. Mol. Catal. A Chem. 2014, 386, 78–85. 31 Cu@PyIm-SBA-15
32
Mesoporous silica Sharma, R. V. et al. Catal. Commun. 2012, 29, 87–91. 32
33
Mesoporous silica Sanjini, N. S. et al. RSC Adv. 2014, 4, 15381–15388. 33
34
Mesoporous silica Sanjini, N. S. et al. RSC Adv. 2014, 4, 15381–15388. 34
35
35 Nanofibers Kumar, P. R. et al. J. Nanosci. Nanotechnol. 2012, 12, 1–25.
36
36 Nanofibers Gopiraman, M. et al. Carbohydr. Polym. 2015, 132, 554–564. Noble metal/functionalized cellulose nanofiber composites
37
37 Nanofibers Gopiraman, M. et al. Carbohydr. Polym. 2015, 132, 554–564.
38
38 Nanofibers Moreno-Cortez, I. E. et al. Mat. Sci. Eng. C 2015, 52, 306–314. Immobilization of papain in nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor (in the solution)
39
39 Nanofibers Lee, B. et al. Chem. Eng. J. 2016, 288, 770–777. protein digestion using highly-stable and reproducible trypsin coatings on magnetic nanofibers
40
40 Nanofibers Yan, Y. X. et al. Biochem. Eng. J. 2015, 98, 47–55. OP – organophosphates OPH – organophosphorus hydrolase PA-66 – polyamide 66
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.