Download presentation
Presentation is loading. Please wait.
Published byPercival Hood Modified over 8 years ago
1
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Impulse Radio Signaling for Communication and Ranging] Date Submitted: [12 May 2005] Source: [Francois Chin, Lei Zhongding, Yuen-Sam Kwok, Xiaoming Peng] Company: [Institute for Infocomm Research, Singapore] Address: [21 Heng Mui Keng Terrace, Singapore 119613] Voice: [65-68745687] FAX: [65-67744990] E-Mail: [chinfrancois@i2r.a-star.edu.sg] Re: [] Abstract: [Presents signaling options to achieve precision ranging with both coherent and non- coherent receivers] Purpose: [To discuss which signal waveform would be the most feasible in terms of performance and implementation trade-offs] Notice:This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release:The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
2
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 2 Objectives PRF definition Impulse Radio Signaling Proposal Common Signaling & Receiver-Specific Signaling for different receivers, for Synchronisation, Ranging and Data Communications –Deterministic Pulse structures –Receiver Code Sequences
3
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 3 PRF: Definition Pulse repetition frequency (PRF): Number of pulses occurring in 1 s. Pulse repetition interval (PRI): Time from the beginning of one pulse to the beginning of the next. V Peak TCTC PRI
4
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 4 123N Active time ………………………................. Quiet time 45678N-1 Non0inverted pulses are blue, Inverted pulses are green. PRF Definition : Example Pulse Repetition Interval Symbol Interval ………………………… …………… Pulse Width, Tc ~ 4ns @ 500MHz BW
5
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 5 Minimum PRF Requirements BW = 528 MHz TechnologyCMOS 90nm 0.7 Vpp T Chip (nsec)1.9 SequenceBipolarTernary (equal ±1 & 0) V Peak (v)0.35 P Ave (dBm)-14 P Peak (dBm)1-2 PRF (MHz) @ V Peak 16.533 BW = 1584 MHz TechnologyCMOS 90nm 0.7 Vpp T Chip (nsec)0.54 BW (MHz)BipolarTernary (equal ±1 & 0) V Peak (v)0.35 P Ave (dBm)-9.3 P Peak (dBm)1.5-1.5 PRF (MHz) @ V Peak 132264
6
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 6 Frequency Plan Band No.Bandwidth (MHz) Low Freq. (MHz) Center Freq. (MHz) High Freq. (MHz) 1 (optional)500318234323682 2 (Mandatory)500371039604210 3 (optional)500423844884738 4 (optional)1500318239604738 3 45 GHz 3.54.53.253.754.254.75 123 Band No. 4
7
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 7 Main Features of proposed system Proposal main features: Impulse-radio based (pulse-shape independent) Common synchronisation / ranging preamble signaling for different classes of nodes / type of receivers (coherent / differential / noncoherent) Band Plan based on multiple 500 MHz bands (center band mandatory) and optional wider bandwidth (1.5 GHz+) concentric with center band Robustness against SOP interference Robustness against other in-band interference Scalability to trade-off complexity/performance
8
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 8 Types of Receivers Supported Coherent Detection: The phase of the received carrier waveform is known, and utilized for demodulation Differential Chip Detection: The carrier phase of the previous signaling interval is used as phase reference for demodulation Non-coherent Detection: The carrier phase information (e.g.pulse polarity) is unknown at the receiver
9
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 9 Bandwidth528MHz Pulse Rep. Freq.33 MHz # Chip / symbol (Code length)31 + 9 zero padding Channel codinge.g. Conv code K = 4, r=2/3 Symbol Rate33/40 MHz = 0.825 MSps coded bit / sym (Mandatory Mode) 2 coded bit / symbol Mandatory bit rate2/3 x 2 bit/sym x 0.825 MSps = 1.1 Mbps Optional bit rate (by adaptive PRF) {2x,4x,8x} 1.1Mbps @ {2x,4x,8x} 33MHz PRF #Code Sequences for Orthogonal Keying 4 (2 bit/symbol) Lower bit rate scalabilitySymbol Repetition Modulation{+1,-1} bipolar and {+1,-1, 0} ternary pulse train Total # simultaneous piconets supported 6 per FDM band Multple access for piconetsCDM (fixed code) + FDM (fixed band) Proposed System Parameters (528 MHz)
10
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 10 Frame Format PPDU Octets: PHY Layer Preamble ?? 1 Frame Length SFD 1 SHRPHRPSDU MPDU Data: 32 (n=23) Frame Cont. Seq. #Address Data Payload CRC Octets: 210/4/82 MAC Sublayer n MHRMSDUMFR For ACK: 5 (n=0)
11
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 11 TG4a Baseline – On Common Signaling Points of Agreement for UWB signalling –Modulation scheme should admit multiple classes of receivers Transmitter based on deterministic pulse structures Should allow reception by coherent, differentially-coherent (can be TR) and non- coherent receivers Provision for homogeneous operation when membership supports it –Ternary modulation Specific modulation format TBD –Sub-banding: Center of three bands is mandatory Other two optional Wider bandwidth (1.5 GHz+) concentric with center band is optional CDMA within frequency bands –Harmonic chip rate – integer relationship between center frequency and chip rate Consider ways to avoid Japanese UNII band (shift band lower) –Integer-plus-half is also proposed, some concerns with DC balance –Maintain 3.1 corner Constant PRF is desired as possible –Specific band plan - TBD –Cost effective reference frequency with appropriate PPM Specific frequency and tolerance is TBD –Potential for optional chirp mode (at best, if and where allowed) Source - 15-05-0172-03-004a-abd-merged-uwb-proposal-ieee802-15-tg4a
12
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 12 Criteria of Code Sequence Design 1.The code sequence should have good auto-correlation properties for synchronisation and ranging for all the below receivers a.Coherent receiver b.Differential chip receiver c.Energy detection receiver 2.The sequence Set should have orthogonal (or near orthogonal) cross correlation properties to minimise symbol decision error
13
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 13 Base Sequence Set Seq 1+ - - 0 0 0 + - 0 + + + 0 + 0 - 0 0 0 0 + 0 0 - 0 - + 0 0 - - Seq 2- 0 + - - 0 0 0 + 0 + 0 + - 0 + 0 0 0 0 + - 0 0 + 0 0 + - - - Seq 3- + 0 + + - - - 0 + 0 0 0 - 0 0 - 0 + 0 + + 0 0 0 0 - + - 0 0 Seq 40 + 0 + - - 0 - - 0 0 0 - + - + + 0 0 + + 0 - 0 0 + 0 0 0 0 - Seq 5+ - + - 0 0 - 0 0 + + 0 0 0 0 + 0 - - 0 - 0 + 0 0 0 - - + 0 + Seq 60 0 - + - 0 0 0 0 + + 0 + 0 - 0 0 - 0 0 0 + 0 - - - + + 0 + - 31-chip Ternary Sequence set are chosen Only one sequence and one fixed band (no hopping) will be used by all devices in a piconet Logical channels for support of multiple piconets 6 sequences = 6 logical channels (e.g. overlapping piconets) for each FDM Band The same base sequence will be used to construct the symbol-to- chip mapping table
14
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 14 Good Properties of the Mapping Sequence 1.Cyclic nature, leads to simple implementation 2.Low DC value for each sequence 3.The same code sequence will be used for synchronisation, ranging, data communications & SOP interference suppression
15
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 15 Ternary – Bipolar – Unipolar Conversion Seq 1+ - - 0 0 0 + - 0 + + + 0 + 0 - 0 0 0 0 + 0 0 - 0 - + 0 0 - - Seq 2- 0 + - - 0 0 0 + 0 + 0 + - 0 + 0 0 0 0 + - 0 0 + 0 0 + - - - Seq 3- + 0 + + - - - 0 + 0 0 0 - 0 0 - 0 + 0 + + 0 0 0 0 - + - 0 0 Seq 40 + 0 + - - 0 - - 0 0 0 - + - + + 0 0 + + 0 - 0 0 + 0 0 0 0 - Seq 5+ - + - 0 0 - 0 0 + + 0 0 0 0 + 0 - - 0 - 0 + 0 0 0 - - + 0 + Seq 60 0 - + - 0 0 0 0 + + 0 + 0 - 0 0 - 0 0 0 + 0 - - - + + 0 + - Seq 1+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + Seq 2+ - + + + - - - + - + - + + - + - - - - + + - - + - - + + + + Seq 3+ + - + + + + + - + - - - + - - + - + - + + - - - - + + + - - Seq 4- + - + + + - + + - - - + + + + + - - + + - + - - + - - - - + Seq 5+ + + + - - + - - + + - - - - + - + + - + - + - - - + + + - + Seq 6- - + + + - - - - + + - + - + - - + - - - + - + + + + + - + + This is in fact m- Sequences! Ternary Bipolar Unipolar ± → + 0 → - + → + - → 0 Seq 1+ + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + Seq 2+ 0 + + + 0 0 0 + 0 + 0 + + 0 + 0 0 0 0 + + 0 0 + 0 0 + + + + Seq 3+ + 0 + + + + + 0 + 0 0 0 + 0 0 + 0 + 0 + + 0 0 0 0 + + + 0 0 Seq 40 + 0 + + + 0 + + 0 0 0 + + + + + 0 0 + + 0 + 0 0 + 0 0 0 0 + Seq 5+ + + + 0 0 + 0 0 + + 0 0 0 0 + 0 + + 0 + 0 + 0 0 0 + + + 0 + Seq 60 0 + + + 0 0 0 0 + + 0 + 0 + 0 0 + 0 0 0 + 0 + + + + + 0 + +
16
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 16 Properties of M-Sequence Transmit – Unipolar M-Seq [+ + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + ] repeated 4x Receive – Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ]
17
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 17 Properties of M-Sequence Transmit – Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] repeated 4x Receive – Unipolar M-Seq [+ + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + ]
18
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 18 Properties of M-Sequence Transmit – Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] repeated 4x Receive – Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ]
19
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 19 How to make use of these properties? Transmit signaling UnipolarBipolar Receive signaling BipolarUnipolarBipolar Tx PAR2x1x Corr O/P peka Signal Amp 16 x sqrt(2)1632 Corr O/P noise Pwr 32 σ 2 16 σ 2 32 σ 2 Corr O/P SNR16 / σ 2 32 / σ 2 Despread Gain16 32 Auto-corr00Low ApplicationsEnergy Det - Ranging / Sync / Comm Coherent Det - Ranging Coherent Det - Sync / Comm
20
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 20 Synchronisation Preamble M-sequences has excellent autocorrelation properties Synchronisation / Ranging Preamble is constructed by repeating the base sequence Common Signaling (Mode 1) Ternary for e.g. Beacon Packet Receiver-specific signaling (Mode 2) Ternary for Energy Detector Bipolar for Coherent and Differential Chip Detectors Long preamble for distant nodes is constructed by further symbol repetition
21
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 21 ………………………… 123314567830 Non0inverted pulses are blue, Inverted pulses are green. Pulse Repetition Interval ~ 30ns …………… Bipolar Signaling for Synchronisation & Ranging …………… Symbol Interval ~940ns Synchronisation / Ranging preamble = Binary Base Sequence repeated For K times…................. Receiver-specific signaling (Mode 2) for Coherent and Differential Chip Detectors
22
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 22 Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] Ranging - Coherent Detector RF& LNA ADC LPF 90 phase shift LPF ADC I Q Local Oscillator @ TX center frequency Correlator PN sequence Mag Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] Criteria/Target – ZERO autocorrelation sidelobes for best leading edge detection In AWGN
23
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 23 Sync - Coherent Detector RF& LNA ADC LPF 90 phase shift LPF ADC I Q Local Oscillator @ TX center frequency Correlator PN sequence Mag Unipolar M-Seq [+ + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + ] Criteria/Target – balance max post-despreading SNR and low auto-correlation sidelobes Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] In AWGN
24
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 24 Associated Differential Sequences (e.g. Seq#1) Seq 1 + - - 0 0 0 + - 0 + + + 0 + 0 – 0 0 0 0 + 0 0 - 0 - + 0 0 - - Seq 1 + + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + Ternary Bipolar Unipolar ± → + 0 → - + → + - → 0 Seq 1 + + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + Seq 1 - + 0 0 0 0 - 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 + - Seq 1 + + - + + - + - - + + - - - - - + + + - - + - - - + - + - + + Diff(Ternary) Diff(Bipolar) Diff(Unipolar) Seq 1 0 0 - 0 0 - 0 - - 0 0 - - - - - 0 0 0 - - 0 - - - 0 - 0 - 0 0 Differential + → 0 What about Diff. Detection?
25
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 25 Diff(Bipolar) [+ + - + + - + - - + + - - - - - + + + - - + - - - + - + - + + ] Ranging – Differential Chip Detector Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] PRI BPF Despreader In AWGN Diff(Unipolar) [0 0 - 0 0 - 0 - - 0 0 - - - - - 0 0 0 - - 0 - - - 0 - 0 - 0 0 ] Criteria/Target – ZERO autocorrelation sidelobes for best leading edge detection
26
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 26 ………………………… 123314567830 Non-inverted pulses are blue, Inverted pulses are green. Pulse Repetition Interval ~ 30ns …………… Ternary Signaling for Synchronisation & Ranging Symbol Interval ~940ns Synchronisation / Ranging preamble = Binary Base Sequence repeated For K times…................. …………… -Common signaling (Mode 1) for ALL Detectors -Receiver-specific signaling (Mode 2) for ED
27
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 27 Sync & Ranging - Energy Detector BPF( ) 2 LPF / integrator ADC Sample Rate 1/T c Sliding Correlator Noncoherent detection of OOK {1,-1} Binary Sequence Soft output Unipolar M-Seq [+ + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + ] Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] Ternary Seq [+ - - 0 0 0 + - 0 + + + 0 + 0 - 0 0 0 0 + 0 0 - 0 - + 0 0 - - ] After Square Law & Integration in PRI Criteria/Target – balance max post-despreading SNR and low auto-correlation sidelobes In AWGN
28
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 28 Ranging: Code Sequences for different Receiver Receiver TypeRanging Signaling Sequence Receive Sequence CoherentBinaryUnipolar Differential ChipBinaryUnipolar(Differential(Binary)) Energy DetectorTernaryBipolar Criteria/Target – ZERO autocorrelation sidelobes for best leading edge detection
29
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 29 Communication: Code Sequences for different Receiver Transmit SignalingReceiver TypeReceive Sequence Ternary (Mode 1) CoherentTernary Differential ChipDifferential(Ternary) Energy DetectorBipolar Bipolar (Mode 2) CoherentBipolar Differential ChipDifferential(Bipolar) Energy DetectorN.A. Criteria/Target – Max SNR and min inter-sequence interference after despreading
30
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 30 Snychronisation: Code Sequences for different Receiver Transmit SignalingReceiver TypeReceive Sequence Ternary (Mode 1) CoherentBipolar Differential ChipDifferential(Ternary) Energy DetectorBipolar Bipolar (Mode 2) CoherentBipolar Differential ChipDifferential(Bipolar) Energy DetectorN.A. Criteria/Target – balance max post-despreading SNR and low auto-correlation sidelobes
31
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 31 Seq 1 + - - 0 0 0 + - 0 + + + 0 + 0 – 0 0 0 0 + 0 0 - 0 - + 0 0 - - Seq 1 + + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + Ternary Bipolar Unipolar ± → + 0 → - + → + - → 0 Seq 1 + + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + Seq 1 - + 0 0 0 0 - 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 + - Seq 1 + + - + + - + - - + + - - - - - + + + - - + - - - + - + - + + Diff(Ternary) Diff(Bipolar) Diff(Unipolar) Seq 1 0 0 - 0 0 - 0 - - 0 0 - - - - - 0 0 0 - - 0 - - - 0 - 0 - 0 0 Differential + → 0 Relationship Between different Sequences Only these 2 are TX Sequences, the rest are Despread Sequences
32
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 32 Transmit & Receive Sequences for different Detectors in different Applications ED-Ranging-Transmit CD-Comm 1/Sync 1-Transmit DD-Comm 1/Sync 1-Transmit ED-Comm 1/Sync 1-Transmit CD-Comm 1-Receive ED-Ranging-Receive CD-Ranging-Transmit DD-Ranging-Transmit CD-Comm 2-Transmit DD-Comm 2-Transmit ED-Comm 1/Sync 1-Receive CD-Comm 2/Sync 1/Sync 2-Receive Ternary Bipolar Unipolar CD-Ranging-Receive DD-Comm 1/Sync 1-Receive DD-Comm 2/Sync 2-Receive Diff(Ternary) Diff(Bipolar) Diff(Unipolar) DD-Ranging-Receive i.e.What is each sequence for?
33
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 33 Data Comms:Transmission Mode Mo de Data Rate (Mbps) Bit / symbo l Sym. Rep. TX Sign- aling Receiver type 1a321Ternary- Short Preamble for all receivers - High Data Rate Mode (for Energy Collection receivers) 1b0.7524Ternary- Long Preamble for all receivers - Low Data Rate Mode (for Energy Collection receivers) 2a321Bipolar- High Data Rate Mode (for Coherent / Differential Chip Receiver) 2b0.7524Bipolar- Low Data Rate Mode (for Coherent / Differential Chip Receiver)
34
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 34 Modulation & Coding (Mode 1) Bit to symbol mapping: group every 2 bits into a symbol Symbol-to-chip mapping: Each 2-bit symbol is mapped to one of 4 31-chip sequence, according to 4-ary Ternary Orthogonal Keying Zero Padding: suggested 9 PRI for reducing inter-symbol interference Symbol Repetition: for data rate and range scalability Pulse Genarator: Transmit Ternary pulses at PRF = 33MHz Bit-to- Symbol Repetition Binary data From PPDU Pulse Generator {0,1,-1} Ternary Sequence Symbol- to-Chip Zero Padding
35
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 35 Symbol Mapping for Mode 1: Grey 4-ary Ternary Orthogonal Keying + Zero Padding Sym bol Cyclic shift to right by n chips, n= 31+9-Chip value 000+ - - 0 0 0 + - 0 + + + 0 + 0 - 0 0 0 0 + 0 0 - 0 - + 0 0 - - 0 0 0 0 0 0 0 0 0 018- 0 - + 0 0 - - + - - 0 0 0 + - 0 + + + 0 + 0 - 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 1116- 0 0 0 0 + 0 0 - 0 - + 0 0 - - + - - 0 0 0 + - 0 + + + 0 + 0 0 0 0 0 0 0 0 0 0 1024- 0 + + + 0 + 0 - 0 0 0 0 + 0 0 - 0 - + 0 0 - - + - - 0 0 0 + 0 0 0 0 0 0 0 0 0
36
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 36 Modulation & Coding (Mode 2) Bit to symbol mapping: group every 2 bits into a symbol Symbol-to-chip mapping: Each 2-bit symbol is mapped to one of 4 31-chip sequence, according to 4-ary Bipolar Orthogonal Keying Ternary to Binary conversion: (-1/+1 → 1,0 → -1) Zero Padding: suggested 9 PRI for reducing inter-symbol interference Symbol Repetition: for data rate and range scalability Pulse Genarator: Transmit bipolar pulses at PRF = 33MHz Bit-to- Symbol Binary data From PPDU Ternary- Bipolar {0,1,-1} Ternary Sequence Symbol- to-Chip {1,-1} Binary Sequence Symbol Repetition Pulse Generator Zero Padding
37
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 37 Symbol Mapping for Mode 2: Bipolar Orthogonal Keying + Zero Padding (after Ternary – Binary Conversion) Symb ol Cyclic shift to right by n chips, n= 31+9-Chip value 000+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + 0 0 0 0 0 0 0 0 0 018+ - + + - - + + + + + - - - + + - + + + - + - + - - - - + - - 0 0 0 0 0 0 0 0 0 1116+ - - - - + - - + - + + - - + + + + + - - - + + - + + + - + - 0 0 0 0 0 0 0 0 0 1024+ - + + + - + - + - - - - + - - + - + + - - + + + + + - - - + 0 0 0 0 0 0 0 0 0
38
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 38 ………………………… 12331 Active time ~940ns ………………………................. Quiet time 9 PRI ~272ns 4567830 Non0inverted pulses are blue, Inverted pulses are green. Pulse Repetition Interval ~ 30ns Symbol Interval ~1.212us Bipolar Signaling for Symbol ’00’ ……………
39
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 39 Code Sequence Properties & Performance 1.AWGN Performance 2.Multipath Performance I.For Coherent Symbol Detector II.For Differential Chip Detector (to be included later) III.For Energy Detector
40
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 40 Coherent Detector Multipath Performance Note - Effect of conv encoder is not included
41
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 41 Energy Detector Multipath Performance Note - Effect of conv encoder is not included
42
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 42 Bandwidth1584MHz Pulse Rep. Freq.264 MHz # Chip / symbol (Code length)255-chip sequence + 65 zero padding Channel codinge.g. Conv code K = 4, r=2/3 Symbol Rate264/320 MHz = 0.825 MSps coded bit / sym2 coded bit / symbol Mandatory bit rate2/3 x 2 bit/sym x 0.825 MSps = 1.1 Mbps Max bit rate (in benign multipath channels) 2/3 x 2 bit/sym x 8 x 0.825 MSps = 8.8 Mbps (31-chip sequence + 9 zero padding) #Code Sequences for Orthogonal Keying 4 (2 bit/symbol) Lower bit rate scalabilitySymbol Repetition Modulation{+1,-1} bipolar and {+1,-1, 0} ternary pulse train Total # simultaneous piconets supported >6 Multple access for piconetsCDM (fixed code per piconet) Proposed Optional Wider Band System
43
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 43 Summary The proposed Impulse-radio based system: has common ternary signaling that –Can be received simultaneously by different types of receivers, namely coherent, differential, and energy detectors –Can be used for both synchronisation and ranging simultaneously Synchronisation & Ranging – Repeated Base Sequence (Ternary or Binary) Simple sliding correlator can be used for Ranging & Sync Data Communications – Orthogonal Keying Symbol (with cyclic shift version of base sequence + zero padding) Is robust against SOP interference
44
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 44 Backup Slides
45
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 45 How Energy Detector handle inter- pulse interference?
46
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 46 Energy Detector Sees An Equivalent Unipolar Sequence after integration in PRI d1d1 d2d2 d3d3 Ternary signaling Non-inverted pulses are blue, Inverted pulses are red. Pulse Repetition Interval ~ 30ns After Square Law & Integration in PRI PRI T1T1 T2T2 T3T3 T4T4 e1e1 e3e3 e2e2 + More Noise due to cross terms Sequence become Unipolar d4d4 d5d5 d6d6 d7d7 c1c1 c2c2 c3c3 c4c4 c5c5 c6c6 c7c7 c j =d j 2 integrator Output is a convolution of the equivalent Unipolar Sequence with a PRI-spaced tap-delay-line channel, each tap comprising multipath energy within a correponding PRI
47
doc.: IEEE 802.15-05-0231-03-004a Submission May 2005 Francois Chin (I 2 R) Slide 47 In Multipath Channels … BPF( ) 2 LPF / integrator ADC Sample Rate 1/T c Soft Despread Noncoherent detection of OOK RAKE combiner {1,-1} Binary Sequence Soft output Figure 1. The block diagram of energy detection receiver using soft despreader and RAKE combiner Unipolar M-Seq [+ + + 0 0 0 + + 0 + + + 0 + 0 + 0 0 0 0 + 0 0 + 0 + + 0 0 + + ] Despread Sequence = Bipolar M-Seq [+ + + - - - + + - + + + - + - + - - - - + - - + - + + - - + + ] Ternary Seq [+ - - 0 0 0 + - 0 + + + 0 + 0 – 0 0 0 0 + 0 0 - 0 - + 0 0 - - ] PRI T1T1 T2T2 T3T3 T4T4 e1e1 e3e3 e2e2 T1T1 T2T2 T3T3 T4T4 e1e1 e3e3 e2e2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.