Download presentation
Presentation is loading. Please wait.
Published byCecily Rebecca Hudson Modified over 8 years ago
1
Inference about the mean of a population of measurements ( ) is based on the standardized value of the sample mean (Xbar). The standardization involves subtracting the mean of Xbar and dividing by the standard deviation of Xbar – recall that –Mean of Xbar is ; and –Standard deviation of Xbar is /sqrt(n) Thus we have (Xbar - )/( /sqrt(n)) which has a Z distribution if: –Population is normal and is known ; or if –n is large so CLT takes over…
2
But what if is unknown?? Then this standardized Xbar doesn’t have a Z distribution anymore, but a so-called t-distribution with n-1 degrees of freedom… Since is unknown, the standard deviation of Xbar, /sqrt(n), is unknown. We estimate it by the so-called standard error of Xbar, s/sqrt(n), where s=the sample standard deviation. There is a t-distribution for every value of the sample size; we’ll use t(k) to stand for the particular t-distribution with k degrees of freedom. There are some properties of these t- distributions that we should note…
3
Every t-distribution looks like a N(0,1) distribution; i.e., it is centered and symmetric around 0 and has the same characteristic “bell” shape… however, the standard deviation of t(k) {sqrt(k/(k-2))} is greater than 1, the s.d. of Z so the t-distribution density curve is more spread out than Z. Probabilities involving r.v.s that have the t(k) distributions are given by areas under the t(k) density curve … Table D in the back of our book gives us the probabilities we need…
4
The good news is that everything we’ve already learned about constructing confidence intervals and testing hypotheses about carries through under the assumption of unknown … So e.g., a 95% confidence interval for based on a SRS from a population with unknown is Xbar +/- t * (s.e.(Xbar)) Recall that s.e.(Xbar) = s/sqrt(n). Here t * is the appropriate tabulated value from Table D so that the area between –t * and +t * is.95 As we did before, if we change the level of confidence then the value of t * must change appropriately…
5
Similarly, we may test hypotheses using this t- distributed standardized Xbar… e.g., to test the H 0 : against H a : we use (Xbar - /(s/sqrt(n)) which has a t- distribution with n-1 df, assuming the null hypothesis is true. See page 422 (7.1, 3/7) for a complete summary of hypothesis testing in the case of “the one-sample t-test” … HW: Read section 7.1 thru p. 433; go over all the examples carefully and answer the HW questions following them: #7.1-7.9 Work on the following problems (p.441 ff) (use JMP as needed): #7.15- 7.22, 7.25, 7.32, 7.35-7.37, 7.41.
6
To summarize the analysis: – when the data comes in matched pairs, the analysis is performed on the differences between the paired measurements – then use the t-statistic with n-1 d.f. (n = # of pairs) to construct confidence intervals and test hypotheses on the true mean difference. Is there a difference in aggressive behavior of patients on "moon days" compared with "non-moon days"?
7
In a matched pairs design, subjects are matched in pairs and the outcomes are compared within each matched pair. A coin toss could determine which of the two subjects gets the treatment and which gets the control… One special kind of matched pairs design is when a subject acts as his/her own control, as in a before/after study… See example 7.7 on page 428ff (7.1, 4/7). Note that the paired observations (# of agressive behaviors) are subtracted and the difference in scores becomes the single number analyzed with a one-sample t-statistic with n-1 df, where n=the number of pairs… see the top of page 431 and the next page for a summary of the process. HW Read through p.433. Go over Example 7.7 then do #7.32, 7.35, 7.41.
8
Read the section on Robustness of the t procedures (starting p.432 (7.1, 5/7))… note the definition of the statistical term robust – essentially, a statistic is robust if it is insensitive to violations of the assumptions made when the statistic is used. For example, the t-statistic requires normality of the population… how sensitive is the t-statistic to violations of normality?? Look at the practical guidelines for inference on a single mean at bottom of p.432… –If the sample size is < 15, use the t procedures if the data are close to normal. –If the sample size is >= 15 then unless there is strong non-normality or outliers, t procedures are OK –If the sample size is large (say n >= 40) then even if the distribution is skewed, t procedures are OK
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.